Neutronic analysis of silicon carbide cladding accident-tolerant fuel assemblies in pressurized water reactors
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Neutronic analysis of silicon carbide cladding accident-tolerant fuel assemblies in pressurized water reactors
  • 作者:Zhi-Xiong ; Tan ; Jie-Jin ; Cai
  • 英文作者:Zhi-Xiong Tan;Jie-Jin Cai;School of Electric Power, South China University of Technology;
  • 英文关键词:Accident-tolerant fuels;;Silicon carbide cladding;;Neutronic characteristics;;Pressurized water reactor
  • 中文刊名:HKXJ
  • 英文刊名:核技术(英文版)
  • 机构:School of Electric Power, South China University of Technology;
  • 出版日期:2019-03-15
  • 出版单位:Nuclear Science and Techniques
  • 年:2019
  • 期:v.30
  • 基金:supported by the National Natural Science Foundation of China(No.11675057);; the Fundamental Research Funds for the Central Universities(No.2017ZD100)
  • 语种:英文;
  • 页:HKXJ201903015
  • 页数:9
  • CN:03
  • ISSN:31-1559/TL
  • 分类号:130-138
摘要
In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry. This research focuses on analysis of the neutronic properties of a silicon carbide(SiC) cladding fuel assembly, which provides a greater safety margin as a type of accident-tolerant fuel for pressurized water reactors. The general physical performance of SiC cladding is explored to ascertain its neutronic performance. The neutron spectrum, accumulation of ~(239)Pu, physical characteristics,temperature reactivity coefficient, and power distribution are analyzed. Furthermore, the influences of a burnable poison rod and enrichment are explored. SiC cladding assemblies show a softer neutron spectrum and flatter power distribution than conventional Zr alloy cladding fuel assemblies. Lower enrichment fuel is required when SiC cladding is adopted. However, the positive reactivity coefficient associated with the SiC material remains to be offset. The results reveal that SiC cladding assemblies show broad agreement with the neutronic performance of conventional Zr alloy cladding fuel. In the meantime, its unique physical characteristics can lead to improved safety and economy.
        In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry. This research focuses on analysis of the neutronic properties of a silicon carbide(SiC) cladding fuel assembly, which provides a greater safety margin as a type of accident-tolerant fuel for pressurized water reactors. The general physical performance of SiC cladding is explored to ascertain its neutronic performance. The neutron spectrum, accumulation of ~(239)Pu, physical characteristics,temperature reactivity coefficient, and power distribution are analyzed. Furthermore, the influences of a burnable poison rod and enrichment are explored. SiC cladding assemblies show a softer neutron spectrum and flatter power distribution than conventional Zr alloy cladding fuel assemblies. Lower enrichment fuel is required when SiC cladding is adopted. However, the positive reactivity coefficient associated with the SiC material remains to be offset. The results reveal that SiC cladding assemblies show broad agreement with the neutronic performance of conventional Zr alloy cladding fuel. In the meantime, its unique physical characteristics can lead to improved safety and economy.
引文
1.L.J.Ott,K.R.Robb,D.Wang,Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions.J.Nucl.Mater.448,520-533(2014).https://doi.org/10.1016/j.jnucmat.2013.09.052
    2.S.J.Zinkle,K.A.Terrani,J.C.Gehin et al.,Accident tolerant fuels for LWRs:a perspective.J.Nucl.Mater.448,374-379(2014).https://doi.org/10.1016/j.jnucmat.2013.12.005
    3.N.R.Brown,H.Ludewig,A.Aronson et al.,Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel.Part II:nodal core calculations and preliminary study of thermal hydraulic feedback.Ann.Nucl.Energy 62,548-557(2013).https://doi.org/10.1016/j.anucene.2013.05.027
    4.N.R.Brown,H.Ludewig,A.Aronson et al.,Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel.Part I:Lattice benchmarking,cycle length,and reactivity coefficients.Ann.Nucl.Energy 62,538-547(2013).https://doi.org/10.1016/j.anucene.2013.05.025
    5.H.Ahmed,K.S.Chaudri,S.M.Mirza,Comparative analyses of coated and composite UN fuel-Monte Carlo based full core LWR study.Prog.Nucl.Energy 93,260-266(2016).https://doi.org/10.1016/j.pnucene.2016.08.014
    6.X.Wu,T.Kozlowski,J.D.Hales,Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions.Ann.Nucl.Energy 85,763-775(2014).https://doi.org/10.1016/j.anucene.2015.06.032
    7.N.M.George,K.Terrani,J.Powers et al.,Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors.Ann.Nucl.Energy 75,703-712(2015).https://doi.org/10.1016/j.anucene.2014.09.005
    8.I.Younker,M.Fratoni,Neutronic evaluation of coating and cladding materials for accident tolerant fuels.Prog.Nucl.Energy88,10-18(2016).https://doi.org/10.1016/j.pnucene.2015.11.006
    9.S.M.Bragg-Sitton,Light Water Reactor Sustainability Program.Advanced LWR Nuclear Fuel Cladding System Development Technical Program Plan,INL/MIS-12e.25696(2012)
    10.Y.Liu,I.Bhamji,P.J.Withers et al.,Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLOTMfuel cladding using a modified shear-lag model approach.J.Nucl.Mater.65,718-727(2015).https://doi.org/10.1016/j.jnucmat.2015.06.003
    11.N.R.Brown,A.J.Wysocki,K.A.Terrani et al.,The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors.Ann.Nucl.Energy 99,353-365(2017).https://doi.org/10.1016/j.anucene.2016.09.033
    12.X.Wu,W.Li,Y.Wang et al.,Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions.Ann.Nucl.Energy 80,1-13(2015).https://doi.org/10.1016/j.anucene.2015.02.040
    13.Y.Katoh,K.Ozawa,C.Shih et al.,Continuous SiC fiber,CVISiC matrix composites for nuclear applications:properties and irradiation effects.J.Nucl.Mater.448,448-476(2014).https://doi.org/10.1016/j.jnucmat.2013.06.040
    14.Y.Deng,Y.Wu,B.Qiu et al.,Development of a new Pellet-Clad Mechanical Interaction(PCMI)model and its application in ATFs.Ann.Nucl.Energy 104,146-156(2017).https://doi.org/10.1016/j.anucene.2017.02.022
    15.D.A.Bloore,Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels(2013).http://hdl.handle.net/1721.1/82454
    16.D.M.Carpenter,An Assessment of Silicon Carbide as a Cladding Material for Light Water Reactors(2010).http://hdl.handle.net/1721.1/76975
    17.H.Matsumiya,K.Yoshioka,T.Kikuchi et al.,Reactivity measurements of SiC for accident-tolerant fuel.Prog.Nucl.Energy82,16-21(2015).https://doi.org/10.1016/j.pnucene.2014.07.030
    18.M.Kromar,B.Kurin?i?,DRAGON and CORD-2 nuclear calculation of the NPP Krsˇko fuel assembly.Nucl.Eng.Des.246,58-62(2012).https://doi.org/10.1016/j.nucengdes.2011.06.043
    19.S.Liu,J.Cai,Neutronic and thermohydraulic characteristics of a new breeding thorium-uranium mixed SCWR fuel assembly.Ann.Nucl.Energy 62,429-436(2013).https://doi.org/10.1016/j.anucene.2013.07.004
    20.S.Liu,J.Cai,Studies of fuel loading pattern optimization for a typical pressurized water reactor(PWR)using improved pivot particle swarm method.Ann.Nucl.Energy 50,117-125(2012).https://doi.org/10.1016/j.anucene.2012.08.007
    21.S.Liu,J.Cai,Design&optimization of two breeding thoriumuranium mixed SCWR fuel assemblies.Prog.Nucl.Energy 70,6-19(2014).https://doi.org/10.1016/j.pnucene.2013.07.011
    22.A.Naceur,G.Marleau,Neutronic analysis for accident tolerant cladding candidates in CANDU-6 reactors.Ann.Nucl.Energy113,147-161(2018).https://doi.org/10.1016/j.anucene.2017.11.016
    23.Y.Katoh,T.Nozawa,L.L.Snead,K.Ozawa,H.Tanigawa,Stability of SiC and its composites at high neutron fluence.J.Nucl.Mater.417,400-405(2011).https://doi.org/10.1016/j.jnucmat.2010.12.088
    24.K.A.Terrani,J.R.Keiser,M.P.Brady,et al.,High Temperature Oxidation of Silicon Carbide and Advanced Iron-Based Alloys in Steam-Hydrogen Environments(2012).https://www.osti.gov/bib lio/1055072
    25.T.Cheng,J.R.Keiser,M.P.Brady et al.,Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure.J.Nucl.Mater.427,396-400(2012).https://doi.org/10.1016/j.jnucmat.2012.05.007
    26.M.H.A.Piro,J.Banfield,K.T.Clarno et al.,Coupled thermochemical,isotopic evolution and heat transfer simulations in highly irradiated UO2nuclear fuel.J.Nucl.Mater.441,240-251(2013).https://doi.org/10.1016/j.jnucmat.2013.05.060
    27.D.Baron,M.Kinoshita,P.Thevenin et al.,Discussion about HBStransformation in high burn-up fuels.Nucl.Eng.Technol.41,199-214(2009).https://doi.org/10.5516/net.2009.41.2.199
    28.S.Chen,C.Yuan,Neutronic analysis on potential accident tolerant fuel-cladding combination U3Si2-FeCrAl,in Science and Technology and Nuclear Installations,2017,(2017-01-18)(2017),pp.1-12
    29.Recently,U.O.The,A simple formula for local burnup and isotope distributions based on approximately constant relative reaction rate,in Science and Technology and Nuclear Installations,2016,(2016-2-17)(2016),pp.1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700