Accumulibacter各进化枝选择性富集及其生态位
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Selective Enrichment and its Ecological Niche of Accumulibacter Clades
  • 作者:李柱 ; 王少坡 ; 赵乐丹 ; 邱春生 ; 郑剑锋 ; 于静洁 ; 赵明 ; 孙力平
  • 英文作者:Li Zhu;Wang Shaopo;Zhao Ledan;Qiu Chunsheng;Zheng Jianfeng;Yu Jingjie;Zhao Ming;Sun Liping;School of the Environment,Tianjin Chengjian University;Tianjin Key Laboratory of Aquatic Science and Technology;Tianjin Sambo Water Technology Co.Ltd.;
  • 关键词:强化生物除磷 ; Accumulibacter ; 进化枝 ; 选择性富集 ; 生态位
  • 英文关键词:enhanced biological phosphorus removal;;Accumulibacter;;clade;;selective enrichment;;ecological niche
  • 中文刊名:HXGY
  • 英文刊名:Chemical Industry and Engineering
  • 机构:天津城建大学环境与市政工程学院;天津市水质科学与技术重点实验室;天津三博水科技有限公司;
  • 出版日期:2019-01-11
  • 出版单位:化学工业与工程
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(51678388);; 天津市水质科学与技术重点实验室开放基金(TJKLAST-PT-2014-05)
  • 语种:中文;
  • 页:HXGY201901008
  • 页数:8
  • CN:01
  • ISSN:12-1102/TQ
  • 分类号:68-75
摘要
废水强化生物除磷(EBPR)系统中,聚磷菌(PAOs)是主要的除磷微生物,其中Accumulibacter是目前公认的主要一类PAOs,含有多个进化枝,且代谢特性存在差异。虽然PAOs尚无法独立培养,但可以在某些条件下选择性富集某一类进化枝的Accumulibacter。对废水EBPR系统内检测到的Accumulibacter具体分枝及其富集的条件进行了总结,并归纳了不同分枝的代谢特性;还分析了Accumulibacter主要分枝与其它菌群在EBPR系统中的相互关系,可为深入了解废水生物除磷微生理生态学、解决同步脱氮除磷污水处理系统的除磷性能恶化、出水水质波动等问题提供支持。
        Phosphorus accumulating organisms(PAOs) are the group of microorganisms primarily responsible for removing phosphorus from wastewater in the Enhanced Biological Phosphorus Removal(EBPR) system. Accumulibacter is currently recognized as the main class of PAOs, which contains several clades. Their metabolic characteristics are different. Although PAOs can not be cultured independently, some kind of clades can be selectively enriched under certain conditions. This paper summarized the specific clades and enrichment conditions of Accumulibacter in the EBPR system, and the metabolic characteristics of different clades were analyzed. The relationship between the main clade of Accumulibacter and other microorganisms in the EBPR system was also analyzed in order to provide reference for deeply understanding of biological phosphorus removal microphysiological ecology, as well as solving the problem of deterioration of phosphorus removal or effluent fluctuation in the simultaneous nitrogen and phosphorus removal wastewater treatment systems.
引文
[1] Oehmen A, Zeng R J, Yuan Z, et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology & Bioengineering, 2005, 91(1): 43-53
    [2] Zhou Y, Ganda L, Lim M, et al. Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs)[J]. Applied Microbiology & Biotechnology, 2010, 88(1): 359-369
    [3] Zhou Y, Ganda L, Lim M, et al. Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions[J]. Bioresource Technology, 2012, 116(7): 340-347
    [4] He S, Gall D L, Mcmahon K D. “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes[J]. Applied & Environmental Microbiology, 2007, 73(18):5 865-5 874
    [5] Mcmahon K D, Yilmaz S, He S, et al. Polyphosphate kinase genes from full-scale activated sludge plants[J]. Applied Microbiology & Biotechnology, 2007, 77(1):167-173
    [6] Peterson S B, Warnecke F, Madejska J, et al. Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal[J]. Environmental Microbiology, 2008, 10(10):2 692-2 703
    [7] Mao Y, Graham D W, Tamaki H, et al. Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants [J]. Scientific Reports, 2015, doi: 10.1038/srep11857
    [8] Flowers J J, He S, Yilmaz S, et al. Denitrification capabilities of two biological phosphorus removal sludges dominated by different “Candidatus Accumulibacter” clades[J]. Environmental Microbiology Reports, 2009, 1(6): 583-588
    [9] Kim J M, Lee H J, Lee D S, et al. Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal[J]. Applied & Environmental Microbiology, 2013, 79(6):1 969-1 979
    [10] Zou H, Lu X, Abualhail S, et al. Enrichment of PAO and DPAO responsible for phosphorus removal at low temperature[J]. Environment Protection Engineering, 2014, 40(1):67-83
    [11] 王亚东,王少坡,郑莎莎,等.生物除磷系统的聚磷微生物种群及其检测方法[J]. 环境工程, 2015, 33(2): 21-26Wang Yadong, Wang Shaopo, Zheng Shasha, et al. Poly-P accumulating microorganisms and identifyingmethods for biological phosphorus removal system[J]. Environmental Engineering, 2015, 33(2): 21-26(in Chinese)
    [12] Lopez-Vazquez C M, Hooijmans C M, Brdjanovic D, et al. Temperature effects on glycogen accumulating organisms[J]. Water Research, 2009, 43(11):2 852-2 864
    [13] Lopez-Vazquez C M, Oehmen A, Hooijmans C M, et al. Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature[J]. Water Research, 2009, 43(2): 462, doi: 10.1016/j.watres.2008.10.032
    [14] 吉茸,王少坡,赵乐丹,等. 聚磷菌Accumulibacter各进化枝研究进展[J].工业水处理, 2017, 37(1):7-11Ji Rong, Wang Shaopo, Zhao Ledan, et al. Research progress on various clades of Accumulibacter of phosphorus accumu-lating organisms [J]. Industrial Water Treatment, 2017, 37(1):7-11(in Chinese)
    [15] Carvalho G, Lemos P C, Oehmen A, et al. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure[J]. Water Research, 2007, 41(19):4 383-4 396
    [16] Slater F R, Johnson C R, Blackall L L, et al. Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP)[J]. Water Research, 2010, 44(17):4 908-4 923
    [17] Welles L, Tian W, Saad S, et al. Accumulibacter, clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake[J]. Water Research, 2015, 83:354-366
    [18] Mao Y, Wang Z, Li L, et al. Exploring the shift in structure and function of microbial communities performing biological phosphorus removal[J]. Plos One, 2016, 11(8): e0161506, doi:10.1371/journal.pone.0161506
    [19] 俞苗新,潘杨,陈晓杰,等. 强化生物除磷过程中厌氧合成PHA代谢机制的最新研究进展[J]. 安全与环境工程, 2013, 20(4):55-61Yu Miaoxin, Pan Yang, Chen Xiaojie, et al. Latest research progress of the Metabolic mechanism of the anaerobic synthesis of PHA in the process of EBPR[J]. Safety and Environmental Engineering, 2013, 20(4):55-61(in Chinese)
    [20] Saad S A, Welles L, Abbas B, et al. Denitrification of nitrate and nitrite by ‘Candidatus, Accumulibacter phosphatis’ clade IC[J]. Water Research, 2016, 105: 97-109
    [21] Camejo P Y, Owen B R, Martirano J, et al. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors[J]. Water Research, 2016, 102: 125-137
    [22] Tian W, Ma C, Lin Y, et al. Enrichment and characterization of a psychrophilic ‘Candidatus, Accumulibacter phosphatis’ culture[J]. International Biodeterioration & Biodegradation, 2017, 124: 267-275
    [23] 吉茸,王少坡,赵乐丹, 等. 碳源类型对AOA-SBR系统的除磷特性和菌群组成的影响[J]. 高技术通讯, 2017, 27(4): 381-388Ji Rong, Wang Shaopo, Zhao Ledan, et al. Effects of carbon sources on phosphorus removal characteristics of anaerobic-oxic-anoxic(AOA)-SBR systems [J]. High Technology Letters, 2017, 27(4): 381-388(in Chinese)
    [24] Shen N, Zhou Y. Enhanced biological phosphorus removal with different carbon sources[J]. Applied Microbiology & Biotechnology, 2016, 100(11):4 735-4 745
    [25] Acevedo B, Oehmen A, Carvalho G, et al. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage[J]. Water Research, 2012, 46(6):1 889-1 900
    [26] Ong Y H, Chua A S, Fukushima T, et al. High-temperature EBPR process: The performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus “Accumulibacter phosphatis”[J]. Water Research, 2014, 64:102-112
    [27] Tian W, Lopezvazquez C M, Li W, et al. Occurrence of PAO I in a low temperature EBPR system[J]. Chemosphere, 2013, 92(10):1 314-1 320
    [28] Onnishayden A, Majed N, Drury D, et al. Effect of sludge residence time on phosphorus removal activities and populations in enhanced biological phosphorus removal (EBPR) systems[J]. 2013, 2013(19):121-132
    [29] Welles L, Abbas B, Sorokin D Y, et al. Metabolic response of “CandidatusAccumulibacter Phosphatis” clade II C to changes in influent P/C ratio[J]. Frontiers in Microbiology, 2016, 7(7): 2 121, doi: 10.3389/fmicb.2016.02121
    [30] Nurmiyanto A, Kodera H, Kindaichi T, et al. Dominant Candidatus Accumulibacter phosphatis enriched in response to phosphate concentrations in EBPR process[J]. Microbes & Environments, 2017, 32(3):260-267
    [31] Welles L, Lopez-Vazquez C M, Hooijmans C M, et al. Prevalence of ‘Candidatus, Accumulibacter phosphatis’ type II under phosphate limiting conditions[J]. Amb Express, 2016, 6(1): 44, doi:10.1186/s13568-016-0214-z
    [32] 张丽敏,曾薇,王安其,等. 城市污水处理厂Candidatus Accumulibacter的菌群结构及定量分析[J]. 环境科学学报, 2016, 36(4):1 226-1 236Zhang Limin, Zeng Wei, Wang Anqi, et al. Community struc-tures and quantitative analyses of Candidatus Accumuli-bacter in municipal wastewater treatment plants[J]. Acta Scientiae Circumstantiae, 2016, 36(4):1 226-1 236(in Chinese)
    [33] Hu J, Ong S L, Ng W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14):3 463-3 471
    [34] Zeng W, Li L, Yang Y, et al. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater[J]. Enzyme & Microbial Technology, 2011, 48(2):134-142
    [35] Lanham A B, Moita R, Lemos P C, et al. Long-Term operation of a reactor enriched in Accumulibacter clade I DPAOs: Performance with nitrate, nitrite and oxygen[J]. Water Science & Technology, 2011, 63(2):352-359
    [36] Pan Y, Cheng K Y, Krishna K C B, et al. Improvement of carbon usage for phosphorus recovery in EBPR-r and the shift in microbial community[J]. Journal of Environmental Management, 2018, 218:569-578
    [37] García M H, Ivanova N, Kunin V, et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities[J]. Nature Biotechnology, 2006, 24(10):1 263-1 269
    [38] Skennerton C T, Barr J J, Slater F R, et al. Expanding our view of genomic diversity in Candidatus Accumulibacter clades[J]. Environmental Microbiology, 2015, 17(5): 1 574-1 585
    [39] Zeng W, Bai X, Guo Y, et al. Interaction of “Candidatus Accumulibacter” and nitrifying bacteria to achieve energy-efficient denitrifying phosphorus removal via nitrite pathway from sewage[J]. Enzyme Microb Technol, 2017, 105:1-8
    [40] Rubiorincón F J, Lopezvazquez C M, Welles L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120:156-164
    [41] 曾薇,李博晓,王向东,等. MUCT短程硝化和反硝化除磷系统中Candidatus Accumulibacter的代谢活性和菌群结构[J]. 中国环境科学, 2013, 33(7):1 298-1 308Zeng Wei, Li Boxiao, Wang Xiangdong, et al. Candidatus Accu-mulibacter metabolic activity and population structure in MUCT process treating domestic wastewater with nitritation and denitrifying phosphorus removal[J]. China Environmental Science, 2013, 33(7):1 298-1 308(in Chinese)
    [42] Wang Y, Zhou S, Ye L, et al. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors[J]. Water Research, 2014, 67:33-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700