Bubble acoustical scattering cross section under multi-frequency acoustic excitation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bubble acoustical scattering cross section under multi-frequency acoustic excitation
  • 作者:时洁 ; 杨德森 ; 张昊阳 ; 时胜国 ; 李松 ; 胡博
  • 英文作者:Jie Shi;De-sen Yang;Hao-yang Zhang;Sheng-guo Shi;Song Li;Bo Hu;Acoustic Science and Technology Laboratory, Harbin Engineering University;College of Underwater Acoustic Engineering, Harbin Engineering University;
  • 英文关键词:acoustical scattering cross section;;bubbles;;multi-frequency excitaion;;nonlinear characteristics
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:Acoustic Science and Technology Laboratory Harbin Engineering University;College of Underwater Acoustic Engineering Harbin Engineering University;
  • 出版日期:2017-07-15
  • 出版单位:Chinese Physics B
  • 年:2017
  • 期:v.26
  • 基金:Project supported by the National Natural Science Foundation of China(Grant No.11674074);; the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1228)
  • 语种:英文;
  • 页:ZGWL201707034
  • 页数:8
  • CN:07
  • ISSN:11-5639/O4
  • 分类号:203-210
摘要
The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.
        The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.
引文
[1]Ainslie M A and Leighton T G 2011 J.Acoust.Soc.Am.130 3184
    [2]Ainslie M A and Leighton T G 2009 J.Acoust.Soc.Am.126 2163
    [3]Keiffer R S,Novarini J C and Norton G V 1997 J.Acoust.Soc.Am.97227
    [4]Trevorrow M V 2003 J.Acoust.Soc.Am.114 2672
    [5]Vossen R V and Ainslie M A 2011 J.Acoust.Soc.Am.130 3413
    [6]Vagle S and Farmer D M 1992 J.Atmos.Oceanic Technol.9 630
    [7]Zhang Y N 2013 J.Fluids Eng.135 091301
    [8]Shi J,Yang D S,Shi S G,Hu B,Zhang H Y and Hu S Y 2016 Chin.Phys.B 25 024304
    [9]Wijngaarden LV 1972 Ann.Rev.Fluid Mech.4 369
    [10]Commander K W and Prosperetti A 1989 J.Acoust.Soc.Am.85 732
    [11]d’Agostino L and Brennen C E 1988 J.Acoust.Soc.Am.84 2126
    [12]Ma Q Y,Qiu Y Y,Huang B,Zhang D and Gong X F.2010 Chin.Phys.B 19 094301
    [13]Newhouse V L and Shankar P M 1984 J.Acoust.Soc.Am.75 1473
    [14]Phelps A D and Leighton T G 1994 Investigations into the use of two frequency excitation to accurately determine bubble sizes,in:Bubble Dynamics and Interface Phenomena(Springer,Netherlands)pp.475–484
    [15]Phelps A D,Ramble D G and Leighton T G 1997 J.Acoust.Soc.Am.101 1981
    [16]Sutin A M,Yoon S W,Kim E J and Didenkulov I N 1998 J.Acoust.Soc.Am.103 2377
    [17]Vagle S and Farmer D M 1998 IEEE J.Oceanic Eng.23 211
    [18]Wyczalkowski M and Szeri A J 1998 J.Acoust.Soc.Am.113 3073
    [19]Zheng H,Mukdadi O,Kim H,Hertzberg J R and Shandas R 2005 Ultrasound Med.Biol.31 99
    [20]Zhang Y N 2012 Int.Commun.Heat.Mass.Transf.39 1496
    [21]Zhang Y N,Du X,Xian H and Wu Y 2015 Ultrason.Sonochem.23 16
    [22]Zhang Y N and Li S C 2015 Ultrason.Sonochem.26 437
    [23]Zhang Y N and Li S C 2017 Ultrason.Sonochem.35 431
    [24]Keller J B and Miksis M 1980 J.Acoust.Soc.Am.68 628
    [25]Lauterborn W and Kurz T 2010 Rep.Prog.Phys.73 106501
    [26]Zhang Y N 2012 Analysis of Radial Oscillations of Gas Bubbles in Newtonian or Viscoelastic Mediums under Acoustic Excitation(Ph.D.Thesis,University of Warwick)
    [27]Naugolnykh K A and Ostrovsky L A 1998 Nonlinear Wave Processes in Acoustics(New York:Cambridge University Press)pp.16–20,261–265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700