用户名: 密码: 验证码:
Microphysical Properties of Rainwater in Typhoon Usagi(2013):A Numerical Modeling Study
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microphysical Properties of Rainwater in Typhoon Usagi(2013):A Numerical Modeling Study
  • 作者:Lin ; DENG ; Wenhua ; GAO ; Yihong ; DUAN ; Yuqing ; WANG
  • 英文作者:Lin DENG;Wenhua GAO;Yihong DUAN;Yuqing WANG;Nanjing University of Information Science and Technology;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences;International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa;
  • 英文关键词:raindrops;;microphysical properties;;typhoon;;simulation
  • 中文刊名:DQJZ
  • 英文刊名:大气科学进展(英文版)
  • 机构:Nanjing University of Information Science and Technology;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences;International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa;
  • 出版日期:2019-04-01
  • 出版单位:Advances in Atmospheric Sciences
  • 年:2019
  • 期:v.36
  • 基金:sponsored by the National (Key) Basic Research and Development (973) Program of China under Contract No. 2015CB452805;; the National Natural Science Foundation of China under Grant Nos. 41775131, 91437101 and 41375068;; a Jiangsu Postgraduate Research and Innovation Program project (KYCX17 0868)
  • 语种:英文;
  • 页:DQJZ201905004
  • 页数:17
  • CN:05
  • ISSN:11-1925/O4
  • 分类号:48-64
摘要
A 2-km resolution simulation using the Weather Research and Forecasting model with Morrison microphysics was employed to investigate the rainwater microphysical properties during different stages of Typhoon Usagi(2013) in the inner-core and outer region. The model reproduced the track, intensity, and overall structure of Usagi(2013) reasonably. The simulated raindrop size distribution showed a rapid increase in small-size raindrop concentration but an oscillated decrease in large-size ones in the inner-core region, corresponding well with the upward motion. It was found that there existed two levels(1.25 and 5.25 km) of maximum number concentration of raindrops. The ice-related microphysics at high levels was stronger than the warm-rain processes at low levels. The larger raindrops formed by self-collection in the inner-core suffered from significant breakup, but the raindrops outside the eyewall did not experience evident breakup. Model results indicated that the dominant terms in the water vapor budget were the horizontal moisture flux convergence(HFC) and local condensation and deposition. The evaporation from the ocean surface(PBL) was ~10% of the HFC in the inner core, but up to 40% in the outer region as the air therein was far from saturation. Furthermore, water vapor in the outer region was obtained equally through evaporation from the cloud and inward transportation from the environment. An earlier start of cloud microphysical processes in the inner-core region was evident during the intensification stage, and the continuous decreasing of condensation in both the inner-core and outer regions might imply the beginning of the storm weakening.
        A 2-km resolution simulation using the Weather Research and Forecasting model with Morrison microphysics was employed to investigate the rainwater microphysical properties during different stages of Typhoon Usagi(2013) in the inner-core and outer region. The model reproduced the track, intensity, and overall structure of Usagi(2013) reasonably. The simulated raindrop size distribution showed a rapid increase in small-size raindrop concentration but an oscillated decrease in large-size ones in the inner-core region, corresponding well with the upward motion. It was found that there existed two levels(1.25 and 5.25 km) of maximum number concentration of raindrops. The ice-related microphysics at high levels was stronger than the warm-rain processes at low levels. The larger raindrops formed by self-collection in the inner-core suffered from significant breakup, but the raindrops outside the eyewall did not experience evident breakup. Model results indicated that the dominant terms in the water vapor budget were the horizontal moisture flux convergence(HFC) and local condensation and deposition. The evaporation from the ocean surface(PBL) was ~10% of the HFC in the inner core, but up to 40% in the outer region as the air therein was far from saturation. Furthermore, water vapor in the outer region was obtained equally through evaporation from the cloud and inward transportation from the environment. An earlier start of cloud microphysical processes in the inner-core region was evident during the intensification stage, and the continuous decreasing of condensation in both the inner-core and outer regions might imply the beginning of the storm weakening.
引文
Black,M.L.,R.W.Burpee,and F.D.Marks Jr.,1996:Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities.J.Atmos.Sci.,53,1887-1909,https://doi.org/10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2.
    Black,R.A.,and J.Hallett,1986:Observations of the distribution of ice in hurricanes.J.Atmos.Sci.,43,802-822,https://doi.org/10.1175/1520-0469(1986)043<0802:OOTDOI>2.0.CO;2.
    Bowman,K.P.,and M.D.Fowler,2015:The diurnal cycle of precipitation in tropical cyclones.J.Climate,28,5325-5334,https://doi.org/10.1175/JCLI-D-14-00804.1.
    Braun,S.A.,2006:High-resolution simulation of Hurricane Bonnie(1998).Part II:Water budget.J.Atmos.Sci.,63,43-64,https://doi.org/10.1175/JAS3609.1.
    Bringi,V.N.,V.Chandrasekar,J.Hubbert,E.Gorgucci,W.L.Randeu,and M.Schoenhuber,2003:Raindrop size distribution in different climatic regimes from disdrometer and dualpolarized radar analysis.J.Atmos.Sci.,60,354-365,https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.
    Chang,W.,T.C.C.Wang,and P.L.Lin,2009:Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar.J.Atmos.Oceanic Technol.,26,1973-1993,https://doi.org/10.1175/2009JTECHA1236.1.
    Dudhia,J.,1989:Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale twodimensional model.J.Atmos.Sci.,46,3077-3107,https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
    Fovell,R.G.,and H.Su,2007:Impact of cloud microphysics on hurricane track forecasts.Geophys.Res.Lett.,34,L24810,https://doi.org/10.1029/2007GL031723.
    Fritz,C.,and Z.Wang,2014:Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation.J.Atmos.Sci.,71,4321-4332,https://doi.org/10.1175/JAS-D-13-0378.1.
    Gamache,J.F.,R.A.Houze Jr.,and F.D.Marks Jr.,1993:Dualaircraft investigation of the inner core of Hurricane Norbert.Part III:Water budget.J.Atmos.Sci.,50,3221-3243,https://doi.org/10.1175/1520-0469(1993)050<3221:DAIOTI>2.0.CO;2.
    Hence,D.A.,and R.A.Houze Jr.,2011:Vertical structure of Hurricane Eyewalls as seen by the TRMM precipitation radar.J.Atmos.Sci.,68,1637-1652,https://doi.org/10.1175/2011JAS3578.1.
    Hence,D.A.,and R.A.Houze,Jr.,2012:Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar.J.Atmos.Sci.,69,2644-2661,https://doi.org/10.1175/JAS-D-11-0323.1.
    Heymsfield,A.J.,A.Bansemer,S.L.Durden,R.L.Herman,and T.P.Bui,2006:Ice microphysics observations in Hurricane Humberto:Comparison with non-hurricane-generated ice cloud layers.J.Atmos.Sci.,63,288-308,https://doi.org/10.1175/JAS3603.1.
    Hong,S.Y.,Y.Noh,and J.Dudhia,2006:A new vertical diffusion package with an explicit treatment of entrainment processes.Mon.Wea.Rev.,134,2318-2341,https://doi.org/10.1175/MWR3199.1.
    Houze,R.A.,Jr.,2010:Clouds in tropical cyclones.Mon.Wea.Rev.,138,293-344,https://doi.org/10.1175/2009MWR2989.1.
    Huang,H.L.,M.J.Yang,and C.H.Sui,2014:Water budget and precipitation efficiency of Typhoon Morakot(2009).J.Atmos.Sci.,71,112-129,https://doi.org/10.1175/JAS-D-13-053.1.
    Jiang,H.Y.,and E.M.Ramirez,2013:Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data.J.Climate,26,6459-6470,https://doi.org/10.1175/JCLI-D-12-00432.1.
    Jiang,H.Y.,E.M.Ramirez,and D.J.Cecil,2013:Convective and rainfall properties of tropical cyclone inner cores and rainbands from 11 years of TRMM data.Mon.Wea.Rev.,141,431-450,https://doi.org/10.1175/MWR-D-11-00360.1.
    Jin,Y.,and Coauthors,2014:The impact of ice phase cloud parameterizations on tropical cyclone prediction.Mon.Wea.Rev.,142,606-625,https://doi.org/10.1175/MWR-D-13-00058.1.
    Kain,J.S.,2004:The Kain-Fritsch convective parameterization:An update.J.Appl.Meteor.,43,170-181,https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
    Kepert,J.,2001:The dynamics of boundary layer jets within the tropical cyclone core.Part I:Linear theory.J.Atmos.Sci.,58,2469-2484,https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.
    Kepert,J.,and Y.Q.Wang,2001:The dynamics of boundary layer jets within the tropical cyclone core.Part II:Nonlinear enhancement.J.Atmos.Sci.,58,2485-2501,https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.
    Khain,A.P.,2009:Notes on state-of-the-art investigations of aerosol effects on precipitation:A critical review.Environmental Research Letters,4,015004,https://doi.org/10.1088/1748-9326/4/1/015004.
    Kummerow,C.,and Coauthors,2000:The status of the Tropical Rainfall Measuring Mission(TRMM)after two years in orbit.J.Appl.Meteor.,39,1965-1982,https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.
    Leppert II,K.D.,and D.J.Cecil,2016:Tropical cyclone diurnal cycle as observed by TRMM.Mon.Wea.Rev.,144,2793-2808,https://doi.org/10.1175/MWR-D-15-0358.1.
    Li,Q.Q.,Y.Q.Wang,and Y.H.Duan,2015:Impacts of evaporation of rainwater on tropical cyclone structure and intensityA revisit.J.Atmos.Sci.,72,1323-1345,https://doi.org/10.1175/JAS-D-14-0224.1.
    Marks,F.D.,Jr.,1985:Evolution of the structure of precipitation in Hurricane Allen(1980).Mon.Wea.Rev.,113,909-930,https://doi.org/10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2.
    Marks,F.D.,Jr.,and R.A.Houze,Jr.,1987:Inner core structure of Hurricane Alicia from airborne Doppler radar observations.J.Atmos.Sci.,44,1296-1317,https://doi.org/10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2.
    Masunaga,H.,and Coauthors,2010:Satellite data simulator unit:A multisensor,multispectral satellite simulator package.Bull.Amer.Meteor.Soc.,91,1625-1632,https://doi.org/10.1175/2010BAMS2809.1.
    McFarquhar,G.M.,H.N.Zhang,G.Heymsfield,J.B.Halverson,R.Hood,J.Dudhia,and F.Marks Jr.,2006:Factors affecting the evolution of hurricane Erin(2001)and the distributions of hydrometeors:Role of microphysical processes.J.Atmos.Sci.,63,127-150,https://doi.org/10.1175/JAS3590.1.
    Miller,W.,H.Chen,and D.L.Zhang,2015:On the rapid intensification of Hurricane Wilma(2005).Part III:Effects of latent heat of fusion.J.Atmos.Sci.,72,3829-3849,https://doi.org/10.1175/JAS-D-14-0386.1.
    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A.Clough,1997:Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16 663-16 682,https://doi.org/10.1029/97JD00237.
    Morrison,H.,and A.Gettelman,2008:A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model,version 3(CAM3).Part I:Description and numerical tests.J.Climate,21,3642-3659,https://doi.org/10.1175/2008JCLI2105.1.
    Morrison,H.,G.Thompson,and V.Tatarskii,2009:Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line:Comparison of oneand two-moment schemes.Mon.Wea.Rev.,137,991-1007,https://doi.org/10.1175/2008MWR2556.1.
    Morrison,H.,S.A.Tessendorf,K.Ikeda,and G.Thompson,2012:Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup.Mon.Wea.Rev.,140,2437-2460,https://doi.org/10.1175/MWR-D-11-00283.1.
    Otkin,J.A.,W.E.Lewis,A.J.Lenzen,B.D.McNoldy,and S.J.Majumdar,2017:Assessing the accuracy of the cloud and water vapor fields in the hurricane WRF(HWRF)model using satellite infrared brightness temperatures.Mon.Wea.Rev.,145,2027-2046,https://doi.org/10.1175/MWR-D-16-0354.1.
    Pattnaik,S.,C.Inglish,and T.N.Krishnamurti,2011:Influence of rain-rate initialization,cloud microphysics,and cloud torques on hurricane intensity.Mon.Wea.Rev.,139,627-649,https://doi.org/10.1175/2010MWR3382.1.
    Petty,G.W.,1994:Physical retrievals of over-ocean rain rate from multichannel microwave imagery.Part I:Theoretical characteristics of normalized polarization and scattering indices.Meteor.Atmos.Phys.,54,79-99,https://doi.org/10.1007/BF01030053.
    Powell,M.D.,1990:Boundary layer structure and dynamics in outer hurricane rainbands.Part II:Downdraft modification and mixed layer recovery.Mon.Wea.Rev.,118,918-938,https://doi.org/10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.
    Reinhart,B.,and Coauthors,2014:Understanding the relationships between lightning,cloud microphysics,and airborne radar-derived storm structure during Hurricane Karl(2010).Mon.Wea.Rev.,142,590-605,https://doi.org/10.1175/MWR-D-13-00008.1.
    Rogers,R.F.,M.L.Black,S.S.Chen,and R.A.Black,2007:An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones.Part I:Comparisons with observations.J.Atmos.Sci.,64,1811-1834,https://doi.org/10.1175/JAS3932.1.
    Rosenfeld,D.,W.L.Woodley,A.Khain,W.R.Cotton,G.Carri′o,I.Ginis,and J.H.Golden,2012:Aerosol effects on microstructure and intensity of tropical cyclones.Bull.Amer.Meteor.Soc.,93,987-1001,https://doi.org/10.1175/BAMS-D-11-00147.1.
    Ryzhkov,A.,M.Diederich,P.F.Zhang,and C.Simmer,2014:Potential utilization of specific attenuation for rainfall estimation,mitigation of partial beam blockage,and radar networking.J.Atmos.Oceanic Technol.,31,599-619,https://doi.org/10.1175/JTECH-D-13-00038.1.
    Skamarock,W.C.,and Coauthors,2008:A description of the Advanced Research WRF version 3.NCAR Tech.Note NCAR/TN-4751STR,113 pp,https://doi.org/10.5065/D68S4MVH.
    Sun,Y.,Z.Zhong,and W.Lu,2015:Sensitivity of tropical cyclone feedback on the intensity of the Western Pacific subtropical high to microphysics schemes.J.Atmos.Sci.,72,1346-1368,https://doi.org/10.1175/JAS-D-14-0051.1.
    Tao,C.,and H.Y.Jiang,2013:Global distribution of hot towers in tropical cyclones based on 11-Yr TRMM data.J.Climate,26,1371-1386,https://doi.org/10.1175/JCLI-D-12-00291.1.
    Tao,W.K.,J.J.Shi,S.S.Chen,S.Lang,P.L.Lin,S.Y.Hong,C.Peters-Lidard,and A.Hou,2011:The impact of microphysical schemes on hurricane intensity and track.AsiaPacific Journal of Atmospheric Sciences,47(1),1-16,https://doi.org/10.1007/s13143-011-1001-z.
    Tokay,A.,P.G.Bashor,E.Habib,and T.Kasparis,2008:Raindrop size distribution measurements in tropical cyclones.Mon.Wea.Rev.,136,1669-1685,https://doi.org/10.1175/2007MWR2122.1.
    Wang,M.J.,K.Zhao,M.Xue,G.F.Zhang,S.Liu,L.Wen,and G.Chen,2016.Precipitation microphysics characteristics of a Typhoon Matmo(2014)rainband after landfall over eastern China based on polarimetric radar observations.J.Geophys.Res.Atmos.,121,12 415-12 433,https://doi.org/10.1002/2016JD025307.
    Wang,Y.Q.,2002:An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model:TCM3.Part II:Model refinements and sensitivity to cloud microphysics parameterization.Mon.Wea.Rev.,130,3022-3036,https://doi.org/10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2.
    Wang,Y.Q.,2009:How do outer spiral rainbands affect tropical cyclone structure and intensity?.J.Atmos.Sci.,66,1250-1273,https://doi.org/10.1175/2008JAS2737.1.
    Wang,Y.,J.W.Fan,R.Y.Zhang,L.R.Leung,and C.Franklin,2013:Improving bulk microphysics parameterizations in simulations of aerosol effects.J.Geophys.Res.Atmos.,118,5361-5379,https://doi.org/10.1002/jgrd.50432.
    Wiedner,M.,C.Prigent,J.R.Pardo,O.Nuissier,J.P.Chaboureau,J.P.Pinty,and P.Mascart,2004:Modeling of passive microwave responses in convective situations using output from mesoscale models:Comparison with TRMM/TMI satellite observations.J.Geophys.Res.Atmos.,109,D06214,https://doi.org/10.1029/2003JD004280.
    Xu,H.Y.,G.Q.Zhai,and X.F.Li,2017:Precipitation efficiency and water budget of Typhoon Fitow(2013):A particle trajectory study.Journal of Hydrometeorology,18,2331-2354,https://doi.org/10.1175/JHM-D-16-0273.1.
    Yang,M.J.,S.A.Braun,and D.S.Chen,2011:Water budget of Typhoon Nari(2001).Mon.Wea.Rev.,139,3809-3828,https://doi.org/10.1175/MWR-D-10-05090.1.
    Yu,Z.F.,Y.Q.Wang,and H.M.Xu,2015:Observed rainfall asymmetry in tropical cyclones making landfall over China.Journal of Applied Meteorology and Climatology,54,117-136,https://doi.org/10.1175/JAMC-D-13-0359.1.
    Yu,Z.F.,Y.Q.Wang,H.M.Xu,N.Davidson,Y.D.Chen,and H.M.Yu,2017:On the relationship between intensity and rainfall distribution in tropical cyclones making landfall over China.Journal of Applied Meteorology and Climatology,56,2883-2901,https://doi.org/10.1175/JAMC-D-16-0334.1.
    Yuter,S.E.,and R.A.Houze Jr.,1995:Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus.Part II:Frequency distributions of vertical velocity,reflectivity,and differential reflectivity.Mon.Wea.Rev.,123,1941-1963,https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.
    Zhang,D.L.,Y.B.Liu,and M.K.Yau,2002:A multiscale numerical study of Hurricane Andrew(1992).Part V:Inner-core thermodynamics.Mon.Wea.Rev.,130,2745-2763,https://doi.org/10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.
    Zhu,T.,and D.L.Zhang,2006:Numerical simulation of Hurricane Bonnie(1998).Part II:Sensitivity to varying cloud microphysical processes.J.Atmos.Sci.,63,109-126,https://doi.org/10.1175/JAS3599.1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700