Spinal and supraspinal control of motor function during maximal eccentric muscle contraction:Effects of resistance training
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spinal and supraspinal control of motor function during maximal eccentric muscle contraction:Effects of resistance training
  • 作者:Per ; Aagaard
  • 英文作者:Per Aagaard;Department of Sports Science and Clinical Biomechanics, University of Southern Denmark;
  • 英文关键词:Corticospinal excitability;;Eccentric muscle contraction;;H-reflex;;Neuromuscular plasticity;;Resistance training;;V-wave
  • 中文刊名:SPHS
  • 英文刊名:运动与健康科学(英文版)
  • 机构:Department of Sports Science and Clinical Biomechanics, University of Southern Denmark;
  • 出版日期:2018-07-15
  • 出版单位:Journal of Sport and Health Science
  • 年:2018
  • 期:v.7
  • 语种:英文;
  • 页:SPHS201803006
  • 页数:13
  • CN:03
  • ISSN:31-2066/G8
  • 分类号:34-45+130
摘要
Neuromuscular activity is suppressed during maximal eccentric(ECC)muscle contraction in untrained subjects owing to attenuated levels of central activation and reduced spinal motor neuron(MN)excitability indicated by reduced electromyography signal amplitude,diminished evoked H-reflex responses,increased autogenic MN inhibition,and decreased excitability in descending corticospinal motor pathways.Maximum ECC muscle force recorded during maximal voluntary contraction can be increased by superimposed electrical muscle stimulation only in untrained individuals and not in trained strength athletes,indicating that the suppression in MN activation is modifiable by resistance training.In support of this notion,maximum ECC muscle strength can be increased by use of heavy-load resistance training owing to a removed or diminished suppression in neuromuscular activity.Prolonged(weeks to months)of heavy-load resistance training results in increased H-reflex and V-wave responses during maximal ECC muscle actions along with marked gains in maximal ECC muscle strength,indicating increased excitability of spinal MNs,decreased presynaptic and/or postsynaptic MN inhibition,and elevated descending motor drive.Notably,the use of supramaximal ECC resistance training can lead to selectively elevated V-wave responses during maximal ECC contraction,demonstrating that adaptive changes in spinal circuitry function and/or gains in descending motor drive can be achieved during maximal ECC contraction in response to heavy-load resistance training.
        Neuromuscular activity is suppressed during maximal eccentric(ECC)muscle contraction in untrained subjects owing to attenuated levels of central activation and reduced spinal motor neuron(MN)excitability indicated by reduced electromyography signal amplitude,diminished evoked H-reflex responses,increased autogenic MN inhibition,and decreased excitability in descending corticospinal motor pathways.Maximum ECC muscle force recorded during maximal voluntary contraction can be increased by superimposed electrical muscle stimulation only in untrained individuals and not in trained strength athletes,indicating that the suppression in MN activation is modifiable by resistance training.In support of this notion,maximum ECC muscle strength can be increased by use of heavy-load resistance training owing to a removed or diminished suppression in neuromuscular activity.Prolonged(weeks to months)of heavy-load resistance training results in increased H-reflex and V-wave responses during maximal ECC muscle actions along with marked gains in maximal ECC muscle strength,indicating increased excitability of spinal MNs,decreased presynaptic and/or postsynaptic MN inhibition,and elevated descending motor drive.Notably,the use of supramaximal ECC resistance training can lead to selectively elevated V-wave responses during maximal ECC contraction,demonstrating that adaptive changes in spinal circuitry function and/or gains in descending motor drive can be achieved during maximal ECC contraction in response to heavy-load resistance training.
引文
1.Fenn WO.The relation between the work performed and the energy liberated in muscular contraction.J Physiol 1924;58:373-95.
    2.Katz B.The relation between force and speed in muscular contraction.JPhysiol 1939;96:45-64.
    3.Edman KA.Double-hyperbolic force-velocity relation in frog muscle fibres.J Physiol 1988;404:301-21.
    4.Abbott BC,Bigland B,Ritchie JM.The physiological cost of negative work.J Physiol 1952;117:380-90.
    5.Aagaard P,Simonsen EB,Trolle M,Bangsbo J,Klausen K.Specificity of training velocity and training load on gains in isokinetic knee joint strength.Acta Physiol Scand 1996;156:123-9.
    6.Aagaard P,Simonsen EB,Magnusson SP,Larsson B,Dyhre-Poulsen P.A new concept for isokinetic hamstring:quadriceps muscle strength ratio.Am J Sports Med 1998;26:231-7.
    7.Aagaard P,Simonsen EB,Andersen JL,Magnusson SP,Halkj?r-Kristensen J,Dyhre-Poulsen P.Neural inhibition during maximal eccentric and concentric quadriceps contraction:effects of resistance training.JAppl Physiol 2000;89:49-57.
    8.Westing SH,Seger JY,Karlson E,Ekblom B.Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man.Eur JAppl Physiol Occup Physiol 1988;58:100-4.
    9.Amiridis IG,Martin A,Morlon B,Martin L,Cometti G,Pousson M,et al.Co-activation and tension-regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans.Eur J Appl Physiol Occup Physiol 1996;73:149-56.
    10.Pinniger GJ,Steele JR,Thorstensson A,Cresswell AG.Tension regulation during lengthening and shortening actions of the human soleus muscle.Eur J Appl Physiol 2000;81:375-83.
    11.Komi PV,Linnamo V,Silventoinen P,Sillanp€a€a M.Force and EMGpower spectrum during eccentric and concentric actions.Med Sci Sports Exerc 2000;32:1757-62.
    12.Andersen LL,Andersen CH,Zebis MK,Nielsen PK,S?gaard K,Sj?gaard G.Effect of physical training on function of chronically painful muscles:a randomized controlled trial.J Appl Physiol 2008;105:1796-801.
    13.Nishikawa K.Eccentric contraction:unraveling mechanisms of force enhancement and energy conservation.J Exp Biol 2016;219:189-96.
    14.Enoka RM.Eccentric contractions require unique activation strategies by the nervous system.J Appl Physiol 1996;81:2339-46.
    15.Duchateau J,Enoka RM.Neural control of shortening and lengthening contractions:influence of task constraints.J Physiol 2008;586:5853-64.TagedEn
    16.Duchateau J,Baudry S.Insights into the neural control of eccentric contractions.J Appl Physiol 2014;116:1418-25.
    17.Duchateau J,Enoka RM.Neural control of lengthening contractions.JExp Biol 2016;219:197-204.
    18.Christou EA,Carlton LG.Motor output is more variable during eccentric compared with concentric contractions.Med Sci Sports Exerc2002;34:1773-8.
    19.Westing SH,Seger JY,Thorstensson A.Effects of electrical stimulation on eccentric and concentric torque-velocity relationships during knee extension in man.Acta Physiol Scand 1990;140:17-22.
    20.Seger JY,Thorstensson A.Electrically evoked eccentric and concentric torque-velocity relationships in human knee extensor muscles.Acta Physiol Scand 2000;169:63-9.
    21.Aagaard P,Thorstensson A.Neuromuscular aspects of exercise:adaptive responses evoked by strength training.In:Kj?r M,editor.Textbook of sports medicine.London:Blackwell;2003.p.70-106.
    22.Jakobsen MD,Sundstrup E,Randers MB,Kj?r M,Andersen LL,Krustrup P,et al.The effect of strength training,recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping.Hum Mov Sci 2012;31:970-86.
    23.Aagaard P,Bangsbo J.The muscular system:design,function and performance relationships.In:Tipton CM,Terjung RL,editors.ACSM’s advanced exercise physiology.American College of Sports Medicine.Philadelphia,PA:Lippincott,Williams&Wilkins;2005.p.144-60.
    24.Aagaard P,Simonsen EB,Andersen JL,Magnusson SP,Bojsen-M?ller F,Dyhre-Poulsen P.Antagonist muscle coactivation during isokinetic knee extension.Scand J Med Sci Sports 2000;10:58-67.
    25.Jaric S,Ropret R,Kukolj M,Ilic DB.Role of antagonist and antagonist muscle strength in performance of rapid movements.Eur J Appl Physiol Occup Physiol 1995;71:464-8.
    26.Andersen LL,Andersen JL,Magnusson SP,Aagaard P.Neuromuscular adaptations to detraining following resistance training in previously untrained subjects.Eur J Appl Physiol 2005;93:511-8.
    27.Aagaard P.Training-induced changes in neural function.Exerc Sports Sci Rev 2003;31:61-7.
    28.Crameri RM,Aagaard P,Qvortrup K,Langberg H,Olesen J,Kj?r M.Myofibre damage in human skeletal muscle:effects of electrical stimulation versus voluntary contraction.J Physiol 2007;583:365-80.
    29.Mackey AL,Kjaer M.Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury.J Appl Physiol 2017;122:533-40.
    30.Caiozzo VJ,Perrine JJ,Edgerton VR.Training-induced alterations of the in vivo force-velocity relationship of human muscle.J Appl Physiol Respir Environ Exerc Physiol 1981;51:750-4.
    31.Colson SS,Martin A,Van Hoecke J.Effects of electromyostimulation versus voluntary isometric training on elbow flexor muscle strength.JElectromyogr Kinesiol 2009;19:e311-9.
    32.Colliander EB,Tesch PA.Effects of eccentric and concentric muscle actions in resistance training.Acta Physiol Scand 1990;140:31-9.
    33.Duncan PW,Chandler JM,Cavanaugh DK,Johnson KR,Buehler AG.Mode and speed specificity of eccentric and concentric exercise training.J Orthop Sports Phys Ther 1989;11:70-5.
    34.Higbie EJ,Cureton KJ,Warren 3rd GL,Prior BM.Effects of concentric and eccentric training on muscle strength,cross sectional area,and neural activation.J Appl Physiol 1996;81:2173-81.
    35.Hortobagyi T,Hill JP,Houmard JA,Fraser DD,Lambert NJ,Israel RG.Adaptive responses to muscle lengthening and shortening in humans.JAppl Physiol 1996;80:765-72.
    36.Komi PV,Buskirk ER.Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle.Ergonomics1972;15:417-34.
    37.Narici MV,Roi GS,Landoni L,Minetti AE,Cerretelli P.Changes in force,cross-sectional area and neural activation during strength training and detraining of the human quadriceps.Eur J Appl Physiol Occup Physiol 1989;59:310-9.
    38.Seger JY,Arvidson B,Thorstensson A.Specific effects of eccentric and concentric training on muscle strength and morphology in humans.Eur JAppl Physiol Occup Physiol 1998;79:49-57.
    39.Spurway NC,Watson H,Mc Millan K,Connolly G.The effect of strength training on the apparent inhibition of eccentric force production in voluntary activated human quadriceps.Eur J Appl Physiol 2000;82:374-80.
    40.Hortobagyi T,Tunnel D,Moody J,Beam S,De Vita P.Low-or high-intensity strength training partially restores impaired quadriceps force accuracy and steadiness in aged adults.J Gerontol Biol Sci 2001;56:B38-47.
    41.Holm L,Reitelseder S,Pedersen TG,Doessing S,Petersen SG,Flyvbjerg A,et al.Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity.J Appl Physiol2008;105:1454-61.
    42.Dorgo S,Edupuganti P,Smith DR,Ortiz M.Comparison of lower body specific resistance training on the hamstring to quadriceps strength ratios in men and women.Res Q Exerc Sport 2012;83:143-51.
    43.Fernandez-Gonzalo R,Nissemark C,Aslund B,Tesch PA,Sojka P.Chronic stroke patients show early and robust improvements in muscle and functional performance in response to eccentric-overload flywheel resistance training:a pilot study.J Neuroeng Rehabil 2014;11:150.doi:10.1186/1743-0003-11-150.
    44.Norrbrand L,Fluckey JD,Pozzo M,Tesch PA.Resistance training using eccentric overload induces early adaptations in skeletal muscle size.Eur J Appl Physiol 2008;102:271-81.
    45.Takarada Y,Takazawa H,Sato Y,Takebayashi S,Tanaka Y,Ishii N.Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans.J Appl Physiol 2000;88:2097-106.
    46.Duclay J,Martin A.Evoked H-reflex and V-wave responses during maximal isometric,concentric,and eccentric muscle contraction.J Neurophysiol 2005;94:3555-62.
    47.Gruber M,Linnamo V,Strojnik V,Rantalainen T,Avela J.Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions.J Neurophysiol2009;101:2030-40.
    48.Duclay J,Pasquet B,Martin A,Duchateau J.Specific modulation of corticospinal and spinal excitabilities during maximal voluntary isometric,shortening and lengthening contractions in synergist muscles.J Physiol2011;589:2901-16.
    49.Duclay J,Pasquet B,Martin A,Duchateau J.Specific modulation of spinal and cortical excitabilities during lengthening and shortening submaximal and maximal contractions in plantar flexor muscles.J Appl Physiol2014;117:1440-50.
    50.Duclay J,Martin A,Robbe A,Pousson M.Spinal reflex plasticity during maximal dynamic contractions after eccentric training.Med Sci Sports Exerc 2008;40:722-34.
    51.Kellis E,Baltzopoulos V.Muscle activation differences between eccentric and concentric isokinetic exercise.Med Sci Sports Exerc1998;30:1616-23.
    52.Westing SH,Cresswell AG,Thorstensson A.Muscle activation during maximal voluntary eccentric and concentric knee extension.Eur J Appl Physiol Occup Physiol 1991;62:104-8.
    53.Beltman JG,Sargeant AJ,van Mechelen W,de Haan A.Voluntary activation level and muscle fiber recruitment of human quadriceps during lengthening contractions.J Appl Physiol 2004;97:619-26.
    54.Babault N,Pousson M,Ballay Y,Van Hoecke J.Activation of human quadriceps femoris during isometric,concentric,and eccentric contractions.J Appl Physiol 2001;91:2628-34.
    55.Webber S,Kriellaars D.Neuromuscular factors contributing to in vivo eccentric moment generation.J Appl Physiol 1997;83:40-5.
    56.Nardone A,Romano?C,Schieppati M.Selective recruitment of highthreshold human motor units during voluntary isotonic lengthening of active muscles.J Physiol 1989;409:451-71.
    57.Howell N,Fuglevand AJ,Walsh ML,Bigland-Ritchie B.Motor unit activity during isometric and concentric-eccentric contractions of the human first dorsal interosseus muscle.J Neurophysiol 1995;74:901-4.
    58.S?gaard K,Christensen H,Jensen BR,Finsen L,Sj?gaard G.Motor control and kinetics during low level concentric and eccentric contractions in man.Electroencephalogr Clin Neurophysiol 1996;101:453-60.
    59.Laidlaw DH,Bilodeau M,Enoka RM.Steadiness is reduced and motor unit discharge is more variable in old adults.Muscle Nerve2000;23:600-12.
    60.Stotz PJ,Bawa P.Motor unit recruitment during lengthening contractions of human wrist flexors.Muscle Nerve 2001;24:1535-41.
    61.Pasquet B,Carpentier A,Duchateau J.Specific modulation of motor unit discharge for a similar change in fascicle length during shortening and lengthening contractions in humans.J Physiol 2006;577:753-65.
    62.Kossev A,Christova P.Discharge pattern of human motor units during dynamic concentric and eccentric contractions.Electroencephalogr Clin Neurophysiol 1998;109:245-55.
    63.Tax AA,Denier van der Gon JJ,Gielen CC,van den Tempel CM.Differences in the activation of m.biceps brachii in the control of slow isotonic movements and isometric contractions.Exp Brain Res 1989;76:55-63.
    64.Zimny ML,Schutte M,Dabezies E.Mechanoreceptors in the human anterior cruciate ligament.Anat Rec 1986;214:204-9.
    65.Schutte MJ,Dabezies EJ,Zimny ML,Happel LT.Neural anatomy of the human anterior cruciate ligament.J Bone Joint Surg Am1987;69:243-7.
    66.Solomonow M,Baratta R,Zhou BH,Shoji H,Bose W,Beck C,et al.The synergistic action of the anterior cruciate ligaments and thighs muscle in maintaining joint stability.Am J Sports Med 1987;15:207-13.
    67.Dyhre-Poulsen P,Krogsgaard MR.Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans.J Appl Physiol 2000;89:2191-5.
    68.Krogsgaard MR,Fischer-Rasmussen T,Dyhre-Poulsen P.Absence of sensory function in the reconstructed anterior cruciate ligament.J Electromyogr Kinesiol 2011;21:82-6.
    69.Draganich LF,Vahey JW.An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstring forces.J Orthop Res1990;8:57-63.
    70.Beynnon B,Howe JG,Pope MH,Johnson RJ,Fleming BC.The measurement of anterior cruciate ligament strain in vivo.Int Orthop1992;16:1-12.
    71.Hirokawa S,Solomonow M,Lu Y,Lou ZP,D’Ambrosia R.Anterior posterior and rotational displacement of the tibia elicited by quadriceps contraction.Am J Sports Med 1992;20:299-306.
    72.Pierrot-Deseilligny E,Morin C.Evidence for supraspinal influences on Renshaw inhibition during motor activity in man.In:Desmedt JE,editor.Progress in clinical neurophysiology.Vol.8.Basel:Karger Publishers;1980.p.142-69.
    73.Hultborn H,Pierrot-Deseilligny E.Changes in recurrent inhibition during voluntary soleus contractions in man studies by an H-reflex technique.JPhysiol 1979;297:229-51.
    74.Petersen NT,Butler JE,Carpenter MG,Cresswell AG.Ia-afferent input to motoneurons during shortening and lengthening muscle contractions in humans.J Appl Physiol 2007;102:144-8.
    75.Barrue-Belou S,Marque P,Duclay J.Recurrent inhibition is higher in eccentric compared to isometric and concentric maximal voluntary contractions.Acta Physiol(Oxf)2018:e13064.doi:10.1111/apha.13064.
    76.Schieppati M.The Hoffmann reflex:a means of assessing spinal reflex excitability and its descending control in man.Prog Neurobiol1987;28:345-76.
    77.Tucker KJ,Tuncer M,T€urker KS.A review of the H-reflex and M-wave in the human triceps surae.Hum Mov Sci 2005;24:667-8.
    78.Zehr EP.Considerations for use of the Hoffmann reflex in exercise studies.Eur J Appl Physiol 2002;86:455-68.
    79.Knikou M.The H-reflex as a probe:pathways and pitfalls.J Neurosci Methods 2008;171:1-12.
    80.Sale DG,Mac Dougall JD,Upton AR,Mc Comas AJ.Effect of strength training upon motoneuron excitability in man.Med Sci Sports Exerc1983;15:57-62.
    81.Aagaard P,Simonsen EB,Andersen JL,Magnusson P,Dyhre-Poulsen P.Neural adaptation to resistance training:changes in evoked V-wave and H-reflex responses.J Appl Physiol 2002;92:2309-18.
    82.Vila-Ch~a C,Falla D,Correia MV,Farina D.Changes in H-reflex and V-wave following short-term endurance and strength training.J Appl Physiol 2012;112:54-63.
    83.Grospr^etre S,Papaxanthis C,Martin A.Modulation of spinal excitability by a sub-threshold stimulation of M1 area during muscle lengthening.Neurosci 2014;263:60-71.
    84.Upton AR,Mc Comas AJ,Sica REP.Potentiation of’late’responses evoked in muscles during effort.J Neurol Neurosurg Psychiat 1971;34:699-711.
    85.Piscione J,Grosset JF,Gamet D,Perot C.Are H-reflex and M-wave recruitment curve parameters related to aerobic capacity?Appl Physiol Nutr Metab 2012;37:990-6.
    86.Heckman CJ,Binder MD.Computer simulations of the effects of different synaptic input systems on motor unit recruitment.J Neurophysiol1993;70:1827-40.
    87.Abbruzzese G,Morena M,Spadavecchia L,Schieppati M.Response of arm flexor muscles to magnetic and electrical brain stimulation during shortening and lengthening tasks in man.J Physiol 1994;481:499-507.
    88.Pinniger GJ,Nordlund M,Steele JR,Cresswell AG.H-reflex modulation during passive lengthening and shortening of the human triceps surae.JPhysiol 2001;534:913-23.
    89.Duclay J,Robbe A,Pousson M,Martin A.Effect of angular velocity on soleus and medial gastrocnemius H-reflex during maximal concentric and eccentric muscle contraction.J Electromyogr Kinesiol 2009;19:948-56.
    90.Burke D,Hagbarth KE,Lofstedt L.Muscle spindle activity in man during shortening and lengthening contractions.J Physiol 1978;277:131-42.
    91.Hultborn H,Meunier S,Morin C,Pierrot-Deseilligny E.Assessing changes in presynaptic inhibition of I a fibres:a study in man and the cat.J Physiol 1987;389:729-56.
    92.Nielsen J,Petersen N.Is presynaptic inhibition distributed to corticospinal fibres in man?J Physiol 1994;477:47-58.
    93.Hahn D,Hoffman BW,Carroll TJ,Cresswell AG.Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort.PLo S One2012;7:e49907.doi:10.1371/journal.pone.0049907
    94.Lee HD,Herzog W.Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis.J Physiol 2002;545:321-30.
    95.Hahn D,Seiberl W,Schmidt S,Schweizer K,Schwirtz A.Evidence of residual force enhancement for multi-joint leg extension.J Biomech2010;43:1503-8.
    96.Tilp M,Steib S,Herzog W.Force-time history effects in voluntary contractions of human tibialis anterior.Eur J Appl Physiol 2009;106:159-66.
    97.Aagaard P.Neural adaptations to resistance exercise.Strength and conditioning:biological principles and practical applications.Hoboken,NJ:Wiley-Blackwell;2010.p.105-24.
    98.Aagaard P,Suetta C,Caserotti P,Magnusson SP,Kj?r M.Role of the nervous system in sarcopenia and muscle atrophy with aging:strength training as a countermeasure.Scand J Med Sci Sports 2010;20:49-64.
    99.Bawa P.Neural control of motor output:can training change it?Exerc Sport Sci Rev 2002;30:59-63.
    100.Kidgell DJ,Frazer AK,Daly RM,Rantalainen T,Ruotsalainen I,Ahtiainen J,et al.Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training.Neurosci2015;300:566-75.
    101.Nordlund MM,Thorstensson A,Cresswell AG.Variations in the soleus H-reflex as a function of activation during controlled lengthening and shortening actions.Brain Res 2002;952:301-7.
    102.Gosgnach S,Quevedo J,Fedirchuk B,Mc Crea DA.Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion.J Physiol 2000;26:639-52.
    103.Loeb GE.Neural Control of Locomotion:how do all the data fit together?Bio Science 1989;39:800-4.
    104.Jami L.Golgi tendon organs in mammalian skeletal muscle:functional properties and central actions.Physiol Rev 1992;72:623-66.
    105.Hulliger M,Nordh E,Vallbo AB.Discharge in muscle spindle afferents related to direction of slow precision movements in man.J Physiol1985;362:437-53.
    106.Heckman CJ,Lee RH,Brownstone RM.Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior.Trends Neurosci 2003;26:688-95.
    107.D’Amico JM,Butler AA,Heroux ME,Cotel F,Perrier JM,Butler JE,et al.Human motoneurone excitability is depressed by activation of serotonin 1A receptors with buspirone.J Physiol 2017;595:1763-73.
    108.Taylor AD,Humphries B,Smith P,Bronks R.Electrophoretic separation of myosin heavy chain isoforms in the human m.vastus lateralis:references to reproducibility and relationships with force,electromechanical delay,fibre conduction velocity,endurance and electromyography.Arch Physiol Biochem 1997;105:10-8.
    109.Farina D,Ferguson RA,Macaluso A,De Vito G.Correlation of average muscle fiber conduction velocity measured during cycling exercise with myosin heavy chain composition,lactate threshold,and VO2max.J Electromyogr Kinesiol 2007;17:393-400.
    110.Farina D,Merletti R,Enoka RM.The extraction of neural strategies from the surface EMG.J Appl Physiol 2004;96:1486-95.
    111.Yao W,Fuglevand RJ,Enoka RM.Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions.J Neurophysiol 2000;83:441-52.
    112.Farina D,Fattorini L,Felici F,Filligoi G.Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization.J Appl Physiol 2002;93:1753-63.
    113.Fattorini L,Felici F,Filligoi GC,Traballesi M,Farina D.Influence of high motor unit synchronization levels on non-linear and spectral variables of the surface EMG.J Neurosci Methods 2005;143:133-9.
    114.Farina D,Negro F,Dideriksen JL.The effective neural drive to muscles is the common synaptic input to motor neurons.J Physiol 2014;592:3427-41.
    115.Thorstensson A,Grimby G,Karlsson J.Force velocity relations and fibre composition in human knee extensor muscles.J Appl Physiol1976;40:12-6.
    116.Aagaard P,Simonsen EB,Trolle M,Bangsbo J,Klausen K.Moment and power generation during maximal knee extensions performed at low and high speed.Eur J Appl Physiol 1994;69:376-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700