Recycled oceanic crust as a source for tonalite intrusions in the mantle section of the Khor Fakkan block, Semail ophiolite(UAE)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recycled oceanic crust as a source for tonalite intrusions in the mantle section of the Khor Fakkan block, Semail ophiolite(UAE)
  • 作者:Hosung ; Joun ; Sotirios ; Kokkalas ; Stylianos ; Tombros
  • 英文作者:Hosung Joun;Sotirios Kokkalas;Stylianos Tombros;Department of Earth Sciences, Khalifa University;Department of Geology, University of Patras;
  • 英文关键词:Tonalites;;Felsic granitoids;;Recycled oceanic crust;;Source contribution;;Partial melting;;Melt inclusions
  • 中文刊名:GSFT
  • 英文刊名:地学前缘(英文版)
  • 机构:Department of Earth Sciences, Khalifa University;Department of Geology, University of Patras;
  • 出版日期:2019-05-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:v.10
  • 基金:part of H.J.'s MSc thesis project (PIPGSTS-16-16)conducted at the Petroleum Institute,UAE.
  • 语种:英文;
  • 页:GSFT201903026
  • 页数:24
  • CN:03
  • ISSN:11-5920/P
  • 分类号:388-411
摘要
Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites, granodiorites, trondhjemites intrusions, however their genesis is still not clearly understood.The sampled Dadnah tonalites that intruded in the mantle section of the Semail ophiolite display arctype geochemical characteristics, are high siliceous, low-potassic, metaluminous to weakly peraluminous, enriched in LILE, show positive peaks for Ba, Pb, Eu, negative troughs for U, Ti and occur with low δ~(18)O_(H_2 O), moderate ε_(Sr) and negative eNd values. They have crystallized at temperatures that range from~550 ℃ to ~720 ℃ and pressure ranging from 4.4 kbar to 6.5 kbar. The isotopic ages from our tonalite samples range between 98.6 Ma and 94.9 Ma, slightly older and overlapping with the age of the metamorphic sole. Our field observations, mineralogical, petrological, geochemical, isotopic and melt inclusion data suggest that the Dadnah tonalites formed by partial melting(~10%-15% continuous or ~12% batch partial melting), accumulation of plagioclase, fractional crystallization(~55%-57%), and interaction with their host harzburgites. These tonalites were the end result of partial melting and subsequent contamination and mixing of ~4% oceanic sediments with ~96% oceanic lithosphere from the subducted slab. This MORB-type slab melt composed from ~97% recycled oceanic crust and ~3% of the overlying mantle.We suggest that a possible protolith for these tonalites was the basaltic lavas from the subducted oceanic slab that melted during the initial stages of the supra-subduction zone(SSZ), which was forming synchronously to the spreading ridge axis. The tonalite melts mildly modified due to low degree of mixing and interaction with the overlying lithospheric mantle. Subsequently, the Dadnah tonalites emplaced at the upper part of the mantle sequence of the Semail ophiolite and are geochemically distinct from the other mantle intrusive felsic granitoids to the south.
        Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites, granodiorites, trondhjemites intrusions, however their genesis is still not clearly understood.The sampled Dadnah tonalites that intruded in the mantle section of the Semail ophiolite display arctype geochemical characteristics, are high siliceous, low-potassic, metaluminous to weakly peraluminous, enriched in LILE, show positive peaks for Ba, Pb, Eu, negative troughs for U, Ti and occur with low δ~(18)O_(H_2 O), moderate ε_(Sr) and negative eNd values. They have crystallized at temperatures that range from~550 ℃ to ~720 ℃ and pressure ranging from 4.4 kbar to 6.5 kbar. The isotopic ages from our tonalite samples range between 98.6 Ma and 94.9 Ma, slightly older and overlapping with the age of the metamorphic sole. Our field observations, mineralogical, petrological, geochemical, isotopic and melt inclusion data suggest that the Dadnah tonalites formed by partial melting(~10%-15% continuous or ~12% batch partial melting), accumulation of plagioclase, fractional crystallization(~55%-57%), and interaction with their host harzburgites. These tonalites were the end result of partial melting and subsequent contamination and mixing of ~4% oceanic sediments with ~96% oceanic lithosphere from the subducted slab. This MORB-type slab melt composed from ~97% recycled oceanic crust and ~3% of the overlying mantle.We suggest that a possible protolith for these tonalites was the basaltic lavas from the subducted oceanic slab that melted during the initial stages of the supra-subduction zone(SSZ), which was forming synchronously to the spreading ridge axis. The tonalite melts mildly modified due to low degree of mixing and interaction with the overlying lithospheric mantle. Subsequently, the Dadnah tonalites emplaced at the upper part of the mantle sequence of the Semail ophiolite and are geochemically distinct from the other mantle intrusive felsic granitoids to the south.
引文
Ahmad, T., Tarney, J., 1991. Geochemistry and petrogenesis of Garhwal volcanics:implications for evolution of the North India lithosphere. Precambrian Research50, 69-88.
    Alabaster, T., Pearce, J A. Malpas, J., 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contributions to Mineralogy and Petrology 81,168-183.
    Allégre, C.J., Sutcliffe, C., 2008. Isotope Geology. Cambridge University Press, 512 p.
    Alleman, F., Peters, T., 1972. The ophiolite-radiolarite belt of the North Oman mountains. Eclogae Geologicae Helvetiae 65, 657-698.Altherr, R., Holl, A., Hegner, E., Langer, C., Kreuzer, H., 2000. High potassium, calcalkaline I-type plutonism in the European Variscides:Northern Vosges(France)and Northern Schwarzwald(Germany). Lithos 50, 51-73.
    Amri, 1., Benoit, M., Ceuleneer, G., 1996. Tectonic setting for the genesis of oceanic plagiogranites:evidence from a paleo-spreading structure in the Oman ophiolite. Earth and Planetary Science Letters 139,177-194.
    Amri, I., Ceuleneer, G., Benoit, M., Python, M., Puga, E., Targuisti, K., 2007. Genesis of granitoids by interaction between mantle peridotites and hydrothermal fluids in oceanic spreading setting in the Oman Ophiolite. Geogaceta 42, 23-26.
    Anonymous, 1972. Penrose field conference on ophiolites. Geotimes 17, 24-25.
    Asimow, P.D., Ghiorso, M.S., 1998. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist 83,1127-1132.
    Ashchepkov,I.V., Vladykin, N.V., Gerasimov, P.A., Saprykin, A.I., Khmel'nikova, O.S.,Anoshin, G.N., 2001. Temperature gradient and structure of the lithospheric block beneath the southeastern margin of the Siberian craton:disintegrated xenolith evidence from kimberlitic pipes of the Aldan shield. Doklady Earth Sciences 378, 495-499.
    Ashchepkov, I.V., 2002. Empirical clinopyroxene thermobarometers for mantle rocks based on the diopside-jadeite exchange. Doklady Earth Sciences 382,366-370.
    Ashchepkov. I.V., 2003. More Precise Equation of the Jd-en Barometer. Herald of the Department of Earth Sciences RAS, p. 21.
    Brophy, J.G., 2008. A study of rare earth element(REE)-SiO_2 variations in felsic liquids generated by basalt fractionation and amphibolite melting:a potential test for discriminating between the two different processes. Contributions to Mineralogy and Petrology 156, 337-357.
    Barker, F., 1979. Trondhjemite:definition, environment and hypotheses of origin. In:Barker, F.(Ed.), Trondhjemites, dacites, and related rocks. Amsterdam, Elsevier.Developments in Petrology 6.1-12.
    Bau, M., Koschinsky, A., Dulski, P., Heinz, J., 1996. Comparison of the partitioning behaviours of yttrium, rare-earth elements and titanium between hydrogenic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta60, 1709-1725.
    Beaudoin, G., Therrien, P., 2009. The updated web stable isotope fractionation calculator. In:De Groot, P.A.(Ed.), Handbook of Stable Isotope Analytical Techniques 2. Elsevier, pp. 1120-1122.
    Bechennec, F., Le Metour, J., Rabu, D., Bourdillon-de-Grissac, C., de Wever, P.,Beurrier, M., Villey, M., 1990. The Hawasina Nappes; stratigraphy, paleogeography and structural evolution of a fragment of the South-Tethyan passive continental margin. In:Rorbertson, A.H.F., Searle, M.P., Ries, A.C.(Eds.), The Geology and Tectonics of the Oman Region, vol. 49. Geological Society, London,Special Publications, pp. 213-223.
    Bilal, E., Giret, A., 1999. The aluminum saturation index and the MgO/TiO2 ratio:two parameters influenced by PH_2O and their use to discriminate magma series.Revista Brasileira de Geociencias 29, 55-58.
    Blundy, J.D., Holland, T.J.B., 1990. Calcic amphibole equilibria and a new amphiboleplagioclase geothermometer. Contributions to Mineralogy and Petrology 104,208-224.
    Boudier, F., Ceuleneer, G., Nicolas, A., 1988. Shear zones, thrusts and related magmatism in the Oman ophiolite:initiation of thrusting at an oceanic ridge.Tectonophysics 151, 275-296.
    Bowman, J.R., 1998. Stable-isotope systematics of skarns. In:Lentz, D.R.(Ed.),Mineralized Intrusion-related Skarn Systems, vol. 26. Mineralogical Association of Canada Short Course Series, pp. 99-145.
    Briqueu, L, Mevel, C., Boudier, F., 1991. Sr, Nd and Pb isotopic constraints in the genesis of a calc-alkaline plutonic suite in the Oman ophiolite related to the obduction process. In:Peters, T.J., Nicolas, A., Coleman, R.G.(Eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Kluwer, Netherlands, pp. 517-542.
    Buddington, A.F., Lindsley, D.H., 1964. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology 5, 310-335.
    Carmody, L, Barry, P.H., Shervais, J.W., Kluesner, J.W., Taylor, LA., 2013. Oxygen isotopes in subducted oceanic crust:a new perspective from Siberian diamondiferous eclogites. Geology, Geophysics and Geosystems 14, 3479-3493.https://doi.org/10.1002/ggge.20220.
    Cathelineau, M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals 23, 471-485.
    Cathelineau, M., Nieva, D., 1985. A chlorite solid solution geothermometer:the Los Azufres(Mexico)geothermal system. Contributions to Mineralogy and Petrology 91, 235-244.
    Chaussidon, M., Sheppard, S.M., Michard, A., 1991. Hydrogen, sulfur and neodymium isotope variations in the mantle beneath the EPR at 12050'N. In:Taylor, H.P.,O'Neil.J.R., Kaplan, I.R.(Eds.), Stable Isotope Geochemistry:A Tribute to Samuel Epstein. Geochemical Society Special Publications, pp. 325-337.
    Clayton, R.N., Mayeda, T.K., 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta 27, 43-52.
    Clayton, R.N., Muffler, LJ.P., White, D.E., 1972. Oxygen isotope fractionation study of calcite and silicates of the River Ranch, California. American Journal of Science266, 968-979.
    Coleman, R.G., 1981. Tectonic setting for ophiolite obduction in Oman. Journal of Geophysical Research 86, 2497-2508.
    Coleman, R.G., Peterman, Z.E., 1975. Oceanic plagiogranite. Journal of Geophysical Research 80.1099-1108.
    Cox, J.S., 2000. Subduction-obduction Related Petrogenetic and Metamorphic Evolution of the Semail Ophiolite Sole in Oman and the United Arab Emirates(Ph.D. thesis). University of Oxford, Oxford, UK, 169 p.
    Cox, J., Searle, M., Pedersen, R., 1999. The petrogenesis of leucogranitic dykes intruding the northern Semail ophiolite, United Arab Emirates:field relationships, geochemistry and Sr/Nd isotope systematics. Contributions to Mineralogy and Petrology 137, 267-287.
    De Paolo, D.J., 1980. Crustal growth and mantle evolution; Inferences from models of element transport and Nd and Sr isotopes. Geochimica et Cosmochimica Acta44, 85-96.
    Ding, T.P., 2004. Analytical methods for silicon isotope determinations. In:De Groot, P.A.(Ed.), Handbook of Stable Isotope Analytical Techniques. Elsevier,pp. 523-537.
    Dixon, S., Rutherford. M.J., 1979. Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites:an experimental study. Earth and Planetary Science Letters 45, 45-60.
    Ebadi, A., Johannes, W., 1991. Beginning of melting and composition of first melts in the system Qz-Ab-Or-H_2O-CO2. Contributions to Mineralogy and Petrology 106,286-295.
    Ernewein, M., Pflumio, C., Whitechurch, H., 1988. The death of an accretion zone as evidenced by the magmatic history of the Sumail ophiolite(Oman). Tectonophysics 151, 247-274.
    Ersoy, Y., Helvaci, C., 2010. FC-AFC-FCA and mixing modeler:a Microsoft Excel spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Computers and Geosciences 36, 383-390.
    France, L, Koepke, J., MacLeod, C., Ildefonse, B., Godard, M., Deloule, E., 2014.Contamination of MORB by anatexis of magma chamber roof rocks:constraints from a geochemical study of experimental melts and associated residues. Lithos202,120-137.
    Friedman,I., O'Neil, J.R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest, 440KK. U.S. Geological Survey Professional Paper, p. 12.
    Frost, B.R., Frost, C.D., 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology 49,1955-1969.
    Ghent, E.D., Stout, M.Z., 1981. Metamorphism at the base of the Semail ophiolite.Journal of Geophysical Research 86, 2557-2571.
    Glennie, K.W., Boeuf, M.G., Hughes-Clarke.M.H.W., Moody-Stuart, M., Pilaar, W.F.,Reinhardt, B., 1974. Geology of the Oman Mountains. Verhandelingen Koninklijk, The Nederlands, Geologisch Mijnbouwkundig Genootschap, p. 31.
    Gnos, E., Nicolas, A., 1996. Structural evolution of the northern end of the Oman Ophiolite and enclosed granulites. Tectonophysics 254,111-137.
    Gnos, E., Peters, T., 1993. K-Ar ages of the metamorphic sole of the Semail ophiolite;implications for ophiolite cooling history. Contributions to Mineralogy and Petrology 113, 325-332.
    Graham, D.W., Barry, B., Hanan, B.W., H6mond, Ch, Blichert-Toft, J., Albarède, F.,2014. Helium isotopic textures in Earth's upper mantle. Geology, Geophysics and Geosystems 15, 2048-2074. https://doi.org/10.1002/2014GC005264.
    Gray, D.R., Gregory, R.T., 2003. Ophiolite obduction and the Samail Ophiolite:the behaviour of the underlying margin. Ophiolites in Earth History 218(1).449-465. https://doi.org/10.1144/GSLSP.2003.218.01.23.
    Goodenough, K.M., Phillips, E.R., Styles, M.T., Thomas, R.J., Farrant, A.R., Arkley, S.LB.,2006. Geology of the Khor Fakkan 1:50000 Map Sheet. British Geological Survey, United Arab Emirates, pp. 1-84.
    Goodenough, K.M., Thomas, R.J., Styles, M.T., Schofield, D.I., MacLeod, C.J., 2014.Records of ocean growth and destruction in the Oman-UAE ophiolite. Elements10,109-114.
    Gregory, R.T., Taylor Jr., H.P., 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman:evidence for 8180 buffering of the oceans by deep(> 5 km)seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research 86, 2737-2755.
    Grimes, C.B., Ushikubo, T., Kozdon, R., Valley, J.W., 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179,48-66.
    Gao, P., Zheng, Y.-F., Zhao, Z.-F., 2016. Distinction between S-type and peraluminous I-type granites:Zircon versus whole-rock geochemistry. Lithos258-259, 77-91.
    Haase, K.M., Freund, S., Koepke, J., Hauff, F., Erdmann, M., 2015. Melts of sediments in the mantle wedge of the Oman ophiolite. Geology 43(4), 275-278. https://doi.org/10.1130/G36451.1.
    Haase, K.M., Freund, S., Beier, C., Koepke, J., Erdmann, M., Hauff, F., 2016. Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite. Contributions to Mineralogy and Petrology 171.1-16.
    Hacker, B.R., 1994. Rapid emplacement of young oceanic lithosphere. Science 265,1563-1565.
    Hacker, B.R., Mosenfelder, J.L, 1996. Metamorphism and deformation along the emplacement thrust of the Samail ophiolite, Oman. Earth and Planetary Science Letters 144, 435-451.
    Hacker, B.R., Gnos, E., 1997. The conundrum of samail:explaining the metamorphic history. Tectonophysics 279, 215-226.
    Hacker, B.R., Mosenfelder, J.L, Gnos, E., 1996. Rapid emplacement of the Oman ophiolite:thermal and geochronological constraints. Tectonics 15.1230-1247.
    Hammarstrom, J.M., Zen, E., 1986. Aluminum in hornblende:an empirical igneous geobarometer. American Mineralogist 71,1297-1313.
    Helgeson, H.C., Kirkham, D.H., Flowers, G.C., 1981. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures:calculation of activity coefficients, osmotic coefficients, and apparent molal, standard, and relative partial molal properties to 600℃and 5 kb.American Journal of Science 281.1249-1516.
    Hemond, C., Hofmann, A.W., Vlastelic, I., Nauret, F., 2006. Origin of MORB enrichment and relative trace element compatibilities along the Mid-Atlantic Ridge between 10°and 24°N. Geochemistry, Geophysics, Geosystems 7, Q12010.https://doi.org/10.1029/2006GC001317.
    Henry, D.J., Guidotti, C.V., Thomson, JA., 2005. The Ti-saturation surface for low-to medium pressure metapelitic biotites:implications for geothermometry and Tisubstitution mechanisms. American Mineralogist 90, 316-328.
    Hofmann, A.W., White, W.M., 1982. Mantle plumes from ancient oceanic crust.Earth and Planetary Science Letters 57, 421-436.
    Hofmann, A.W., 2004. Sampling mantle heterogeneity through oceanic basalts:isotopes and trace elements. Treatise in Geochemistry 2, 61-101.
    Holtz, F., Pichavant, M., Barbey, P., Johannes, W., 1992. Effects of H_2O on liquidus phase relations in the haplogranitic system at 2 and 5 kbar. American Mineralogist 77,1223-1241.
    Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548.
    Ito, E., Stern, R.J., 1986. Oxygen-and strontium-isotopic investigations of subduction zone volcanism:the case of the Volcano Arc and the Mariana Island Arc. Earth and Planetary Science Letters 76, 312-320.
    Jacobs, J., Thomas, R.J., Ksienzyk, A.K., Dunkl, 1., 2015. Tracking the Oman ophiolite to the surface-new fission track and(U-Th)/He data from the Aswad and Khor Fakkan Massifs, United Arab Emirates. Tectonophysics 644, 68-80.
    Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92:a software package for calculating the standard molal thermodynamic properties of minerals, gases,aqueous species and reactions from 1 to 5000 bars and 0 to 10000℃. Computers and Geoscience 18, 899-947.
    Johnson, M.C, Rutherford, M.J., 1989. Experimental calibration of the aluminum-inhornblende geobarometer with application to Long Valley caldera(California)volcanic rocks. Geology 17, 837-841.
    Jowett, E.C., 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In:GAC/MAC/SEG Joint Annual Meeting, Toronto, A62, p. 16.
    Kelemen, P.B., Koga, K., Shimizu, N., 1997. Geochemistry of gabbro sills in the crust/mantle transition zone of the Oman ophiolite:implications for the origin of the oceanic lower crust. Earth and Planetary Science Letters 146, 475-488.
    Kostopoulos, D.K., Murton, B.J., 1992. Origin and distribution of components in boninite genesis:significance of the OIB component, 60. Geological Society,London, Special Publications, pp. 133-154.
    Koepke, J., Feig, S.T., Snow.J., Freise, M., 2004. Petrogenesis of oceanic plagiogranites by partial melting of gabbros:an experimental study. Mineralogy and Petrology146, 414-432.
    Koepke, J., Berndt, J., Feig, S.T., Holtz, F., 2007. The formation of SiO_2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology 153, 67-84.
    Kranidiotis, P., MacLean, W.H., 1987. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology 82,1898-1911.
    Kuscu, I., Yilmazer, E., Giileq, N., Bayir, S., Demirela, G., encalioglu-Kuscu, G.,Gezer, G., Kuru, S., Kaymakci, N., 2011. U-Pb and 40Ar-39Ar Geochronology and isotopic constraints on the genesis of copper-gold-bearing iron oxide deposits in the Hasancelebi District, Eastern Turkey. Economic Geology 106, 261-288.
    Lee, C.-T.A., Morton, D.M., 2015. High silica granites:Terminal porosity and crystal settling in shallow magma chambers. Earth and Planetary Science Letters 409,23-31.
    Lepage, LD., 2003. ILMAT:an excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computer Geoscience 29, 673-678.
    Lippard, S,J., Shelton, A.W., Gass, I.G., 1986. The Ophiolite of Northern Oman. The Geological Society Memoir no. 11. Blackwell Scientific Publications, Oxford, p. 178.
    Liu, Y., He, D., Gao, C., Foley, S., Gao, S., Hu, Z., Zong, K., Chen, H., 2015. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths.Scientific Reports 5.11547. https://doi.org/10.1038/srep11547.
    Ludwig, K.R., 2001. Users Manual for Isoplot/Ex, rev. 2.49. A Geochronological Toolkit for Microsoft Excel, vol. la. Berkeley Geochronology Center, Special Publication, pp. 1-55.
    Lustrino, M., Anderson, D.L, 2015. The mantle isotopic printer:basic mantle plume geochemistry for seismologists and geodynamicists. In:Foulger, G.R.,Lustrino, M., King, S.D.(Eds.), The Interdisciplinary Earth:A Volume in Honor of Don L Anderson, vol. 514. Geological Society of America Special Paper,pp. 257-279.
    Malpas, J., 1979. Two contrasting plagiogranite associations from transported ophiolites in western Newfoundland:initial report. In:Barker, F.(Ed.),Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 465-487.
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635-643.
    Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid:relationships and some implications for crustal evolution. Lithos 79.1-24.
    McCulloch, M.T., Gregory, R.T., Wasserburg, G.J., Taylor Jr., H.P., 1980. A neodymium,strontium, and oxygen isotopic study of the Cretaceous Samail Ophiolite andimplications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth and Planetary Science Letters 46, 201-211.
    McCulloch, M.T., Gregory, R.T., Wasserburg, G.J., Taylor Jr., H.P., 1981. Sm-Nd, Rb-Sr and~(18)O-~(16)O isotropic systematics in an oceanic crustal section; evidence from the Semail ophiolite. Journal of Geophysical Research 86, 2721-2735.
    McDonough, W.F., Sun, S., 1995. The composition of the Earth. Chemical Geology120, 223-253.
    Michael, P.J., McDonough, W.F., Nielsen, R.L., Cornell, W.C., 2002. Depleted melt inclusions in MORB plagioclase:messages from the mantle or mirages from the magma chamber? Chemical Geology 183(1-4), 43-61. https://doi.org/10.1016/50009-2541(01)00371-0.
    Middlemost, E., 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews 37, 215-224.
    Moore, D.M., Reynolds, R.C., 1997. X-Ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p. 378.
    Nicolas, A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere.Kluwer Academic, Amsterdam, p. 369. ISBN 978-94-010-7569-5.
    Nicolas, A., Ildefonse, B., Boudier, F., Lenoir, X., Ben Ismail, W., 2000. Dike Distribution in the Oman-United Arab Emirates Ophiolite, vol. 21. Kluwer Academic Publishers, pp. 269-287.
    Pallister, J.S., Hopson, C.A., 1981. Samail ophiolite plutonic suite:field relations,phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. Journal of Geophysical Research 86, 2593-2644.
    Pallister, J.S., Knight, R.J., 1981. Rare-earth element geochemistry of the samail ophiolite near Ibra, Oman. Journal of Geophysical Research 86, 2673-2697.
    Papanastassiou, D.A., DePaolo, D.J., Wasserburg, G.J., 1977. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility. In:Lunar Science Conference, 8th Houston, Proceedings, vol. 2. Pergamon Press, New York, pp. 1639-1672.
    Pearce, J A., 1980. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites. In:Panayiotou, A.(Ed.), Ophiolites:Proceedings of the International Ophiolite Symposium, 1979, Cyprus, Nicosia, Cyprus Ministry Agriculture Natural Resources. Geological Survey Department, pp. 261-272.
    Pearce, J.A., 1996. A user's guide to basalt discrimination diagrams. In:Wyman, DA.(Ed.), Trace Element Geochemistry of Volcanic Rocks:Applications for Massive Sulphide Exploration, vol. 12. Geological Association of Canada Short Course Notes, pp. 79-113.
    Pearce, J.A., Alabaster, T., Shelton, A.W., Searle, M.P., 1981. The Oman ophiolite as a Cretaceous arcbasin complex:evidence and implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 300(1454), 299-317.
    Pearce, J A., Harris, N.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25,956-983.
    Peters, T.J., Kamber, B.S., 1994. Peraluminous, potassium rich granitoids in the Semail ophiolite. Contributions to Mineralogy and Petrology 118, 229-238.
    Peters, B.J., Day.J.M.D., 2014. Assessment of relative Ti, Ta and Nb(TITAN)enrichments in ocean island basalts. Geochemistry, Geophysics, Geosystems 15.https://doi.org/10.1002/2014GC005506.
    Pflumio, C., 1991. Evidences for polyphased oceanic alteration of the extrusive sequence of the Semail ophiolite from the Salahi block(northern Oman). In:Peters, T., Nicolas, A., Coleman, R.G.(Eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology 5. Kluwer Academic Publishers, Dordrecht, pp. 313-352.
    Pichou, J.L, Pouchoir, F., 1985."PAP"procedure for improved quantitative microanalysis. Microbeam Analysis 20,104-105.
    Pilet, S., Baker, B.M., Müntener, O., Stolper, M.E., 2011. Monte-Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. Journal of Petrology 52,1415-1442.
    Pringle, E.A., Moynier, F., Savage, P.S., Jackson, M.G., Moreira, M., Day,J.M.D..2016. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of ocean island basalts. Geochimica et Cosmochimica Acta 189,282-295.
    Putirka, K., 2008. Thermometers and barometers for volcanic systems. In:Putirka, K., Tepley, F.(Eds.), Minerals, Inclusions and Volcanic Processes. Reviews in Mineralogy and Geochemistry 69, pp. 61-120.
    Powell, R., Powell, M., 1977. Geothermometry and oxygen barometry using coexisting iron-titanium oxides:a reappraisal. Mineralogical Magazine 41,257-263.
    Python, M., Ceuleneer, G., 2003. Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geology,Geophysics and Geosystems(G-Cubed)4, 8612-8646.
    Rickwood, P., 1989. Boundary lines within petrologic diagrams, which use oxides of major and minor elements. Lithos 22, 247-263.
    Rioux, M., Bowring, S., Kelemen, P., Gordon, S., Miller, R., Dudás, F., 2013. Tectonic development of the Samail ophiolite:high-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement.Journal of Geophysical Research:Solid Earth 118, 2085-2101.
    Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., Hacker, B., 2016.Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite:new constraints on the tectonic evolution during ophiolite formation from high-precision U-Pb zircon geochronology. Earth and Planetary Science Letters 451.185-195.
    Roberts, N.M.W., Spencer, C.J., 2014. The zircon archive of continent formation through time. In:Roberts, N.M.W., Van Kranendonk, M., Parman, S., Shirey, S.,Clift, P.D.(Eds.), Continent Formation through Time, vol. 389. Geological Society,London, Special Publications. https://doi.org/10.1144/SP389.14.
    Roberts, N.M.W., Thomas, R.J., Jacobs, J., 2016. Geochronological constraints on the metamorphic sole of the Semail ophiolite in the United Arab Emirates. Geoscience Frontiers 7, 609-619.
    Rollinson, H., 2009. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112, 352.
    Rollinson, H., 2014. Plagiogranites from the mantle section of the Oman Ophiolite:models for early crustal evolution. In:Rollinson, H., Searle, M.P., Abbasi, I., AILazki, A., AI Kindi, M.H.(Eds.), Tectonic Evolution of the Oman Mountains, vol.392. Geological Society, London, Special Publications, pp. 247-261.
    Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy, 12. Mineralogical Society of America, p. 644.
    Rollinson. H., 2015. Slab and sediment melting during subduction initiation:granitoid dykes from the mantle section of the Oman ophiolite. Contributions to Mineralogy and Petrology 170,1-20.
    Rudnick, R.L, Gao, S., 2003. Composition of the continental crust. In:Rudnick, R.L(Ed.), The Crust. Elsevier, p. 170.
    Savelieva, G.N., Bortnikov, N.S., Bayanova, T.B., Ikorskii, S.V., Kamenskii, I.L, 2008.Sm-Nd and Rb-Sr isotopic systems and captured He and hydrocarbon gases as markers of melt sources and fluid regime under which the oceanic crust of the Mid-Atlantic Ridge was formed at 5°-6°N. Geochemistry International 46,745-758. https://doi.org/10.1134/S0016702908080016.
    Searle, M.P., 1980. The Metamorphic Sheet and Underlying Volcanic Rocks beneath the Oman Ophiolite in the Northern Oman Mountains of Arabia(Unpublished)(PhD thesis). Open University, Milton Keynes.
    Searle, M.P., Malpas, J., 1980. Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction. Transactions of the Royal Society of Edinburgh, Earth Sciences 71, 247-262.
    Searle, M.P., Malpas, J., 1982. Petrochemistry and origin of sub-ophiolite metamorphic and related rocks in the Oman Mountains. Journal of the Geological Society of London 139, 235-248.
    Searle, M.P., Cox, J., 1999. Tectonic setting, origin, and obduction of the Oman ophiolite. Geological Society of America Bulletin 111, 104-122.
    Searle, M.P.. Cox, J., 2002. Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains. Geological Magazine 139, 241-255.
    Searle, M.P., Ali, M., 2009. Structural and tectonic evolution of the Jabal Sumeini-AI Ain-Buraimi region, northern Oman and eastern United Arab Emirates. GeoArabia 14.115-142.
    Searle, M.P., Waters, D.J., Garber, J.M., Rioux, M., Cherry, A.G., Ambrose, T.K., 2015.Structure and metamorphism beneath the obducting Oman ophiolite:evidence from the Bani Hamid granulites, northern Oman Mountains. Geosphere 11.1812-1836.
    Shock, E.T., Helgeson, H.C., 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures:correlation algorithms for ionic species and equation of state prediction to 5 kb and 1000C.Geochimica et Cosmochimica Acta 52, 2009-2036.
    Smith, P.M., Asimow, P.D., 2005. Adiabat_lph:a new public front-end to the MELTS,pMELTS, and pHMELTS models. Geology. Geophysics and Geosystems(GCubed)6,1-8. https://doi.org/10.1029/2004GC000816. Q02004.
    Soret, M., Agard, P., Dubacq, B., Plunder, A., Yamato, P., 2017. Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy(Semail ophiolite, Oman and UAE). Journal of Metamorphic Geology 35, 1051-1080.https://doi.org/10.1111/jmg.12267.
    Sobolev, A.V., 1996. Melt inclusions in minerals as a source of principle petrological information. Petrology 4, 209-220.
    Spencer, C.J., Cavosie, A.J., Raub, T.D., Rollinson, H., Jeon, H., Searle, M.P.,Miller, J.A., McDonald, B.J., Evans, N.J., The Edinburgh Ion Microprobe Facility(EIMF), 2017. Evidence for melting mud in Earth's mantle from extreme oxygen isotope signatures in zircon. Geology 45, 975-978. https://doi.org/10.1130/G39402.1.
    Spooner, E.T.C., 1977. Hydrodynamic model for the origin of the ophiolitic cupriferous pyrite ore deposits of Cyprus. Geological Society, London, Special Publications 7, 58-72.
    Stakes, D.S., Taylor, H.P., 1992. The northern Samail ophiolite:an oxygen isotope,microprobe and field study. Journal of Geophysical Research 97, 7043-7080.
    Stern, R.J., Reagan, M., Ishizuka,O., Ohara, Y., Whattam, S., 2012. To understand subduction initiation, study forearc crust:To understand forearc crust, study ophiolites. Lithosphere 4, 469-483.
    Stormer, J.C., 1975. A practical two-feldspar geothermometer. American Mineralogist 60, 667-674.
    Stormer, J.C., 1983. The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multi-component iron-titanium oxides.American Mineralogist 68, 586-594.
    Stracke, A., Bizimis, M., Salters,VJ.M., 2003. Recycling oceanic crust:quantitative constraints. Geology, Geophysics and Geosystems(G-Cubed)4,1-33. https://doi.org/10.1029/2001GC000223.
    Styles, M.T., Ellison, R.A., Phillips, E.R., Arkley, S., Schofield, D.I., Thomas, R.J.,Goodenough, K.M., Farrant, A.R., McKervey, J.A., Crowley, Q.G., Pharoah, T.C.,2006. The geology and geophysics of the United Arab Emirates, vol. 2. Geology,Ministry of Energy, United Arab Emirates, Abu Dhabi, p. 351.
    Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders, A.D., Norry, M.J.(Eds.), 42. Geological Society, London, Special Publications, pp. 313-345.
    Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T..Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru. T.. Takahashi, K.,Yanagi, T.. Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M.,Dragusanu, C., 2000. JNdi-1:a neodymium isotopic reference in consistency with La Jolla neodymium. Chemical Geology 168, 279-281.
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust:Its Composition and Evolution. Blackwell, Oxford, 312.
    Thomas, R.J., Ellison, R.A., 2014. Geological Evolution of the United Arab Emirates.Over Six Hundred Million Years of Earth History. British Geological Survey.Keyworth, Nottingham, p. 287.
    Thomas, R.J., Styles, M.T., Goodenough, K.M., 2014. The UAE-Oman Ophiolite-a cross section through the Earth's oceanic lithosphere on land. In:Thomas, R.J.,Ellison, R.A.(Eds.), Geological Evolution of the United Arab Emirates:Over Six Hundred Million Years of Earth History. British Geological Survey, Ministry of Energy United Arab Emirates, pp. 153-176.
    Thorkelson, D.J., Breitsprecher, K., 2005. Partial melting of slab window margins:genesis of adakitic and non-adakitic magmas. Lithos 79, 25-41.
    Tilton, G.R.. Hopson, C.A., Wright. J.E., 1981. Uranium-lead isotopic ages of the Semail ophiolite Oman, with applications to Tethyan ocean ridge tectonics.Journal of Geophysical Research 86. 2763-2776.
    Tippit, P.R., Pessagno, E.A., Smewing, J.D., 1981. The biostratigraphy of sediments in the volcanic unit of the Samail Ophiolite. Journal of Geophysical Research862756-862762.
    Valley. J.W.. 2003. Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry 53. 343-385. https://doi.org/10.2113/0530343.
    Warren, C.J., Parrish, R.R., Waters, D.J., Searle, M.P., 2005. Dating the geologic history of Oman's Semail ophiolite:insights from U-Pb geochronology. Contributions to Mineralogy and Petrology 150, 403-422.
    White, W.M., Klein, E.M., 2014. Composition of the oceanic crust. Treatise on Geochemistry 2, 457-496.
    Whitney, D., Evans, B., 2010. Abbreviations for names of rock-forming minerals.American Mineralogist 95,185-187.
    Winchester, J.A. Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325-343.
    Wu, T.W., Kerrich, R., 1986. Combined oxygen isotope compositional studies of some granitoids from the Grenville, Ontario, Canada. Implications for source regions.Canadian Journal of Earth Sciences 23,1420-1432.
    Xu, W., Zhang, H., Luo, B., Guo, L., Yang, H., 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas:an example from the late cretaceous magmatism in Gangdese belt, south Tibet. Lithos 232.197-210.
    Xu, Z., Zheng, Y.F., Zhao, Z.F., 2018. Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts. Scientific Reports 8,178. https://doi.org/10.1038/s41598-017-18549-7.
    Zhao, Z., Zheng, Y., 2003. Calculation of oxygen isotope fractionation in magmatic rocks. Chemical Geology 193, 59-80.
    Zheng, Y.F., 1993a. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochimica et Cosmochimica Acta 57.1079-1091.
    Zheng, Y.F., 1993b. Calculation of oxygen-isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters 120, 247-263.
    Zi, J.W., Cawood, P.A., Fan, W.M., Wang, Y.J., Tohver, E., 2012. Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic mélange,southwest China, and implications for the Paleo-Tethys. Tectonics 31, TC2012.https://doi.org/10.1029/2011TC002937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700