人体下腰椎显微骨硬度分布特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The hardness variations and characteristics of human lower lumbar vertebra by Vickers microindentation
  • 作者:张晓娟 ; 殷兵 ; 王建朝 ; 李升 ; 刘国彬 ; 胡祖圣 ; 吴卫卫 ; 张英泽
  • 英文作者:ZHANG Xiaojuan;YIN Bing;WANG Jianzhao;Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University; Orthopaedic Research Institution of Hebei Province; Key Laboratory of Biomechanics of Hebei Province;
  • 关键词:腰椎 ; 显微硬度 ; 显微压痕技术 ; 生物力学
  • 英文关键词:Lumbar vertebrae;;Micro-hardness;;Microindentation technique;;Biomechanics
  • 中文刊名:ZJZS
  • 英文刊名:Chinese Journal of Spine and Spinal Cord
  • 机构:河北医科大学第三医院创伤急救中心河北省骨科研究所河北省骨科生物力学重点实验室;
  • 出版日期:2019-04-25
  • 出版单位:中国脊柱脊髓杂志
  • 年:2019
  • 期:v.29;No.265
  • 语种:中文;
  • 页:ZJZS201904009
  • 页数:5
  • CN:04
  • ISSN:11-3027/R
  • 分类号:61-65
摘要
目的:探讨人体下腰椎显微骨硬度的分布特征。方法:选取三具新鲜尸体捐献者,取出L3~L5椎体后剔除软组织。按脊柱两柱理论将椎体分为椎体区和附件区,并使用高精慢速锯,于椎体区垂直上下终板切割4片,右侧附件区沿椎弓根长轴切割1片,左侧附件区沿上下关节突长轴切割(1片),将骨骼制备成若干厚约3mm的骨组织切片,并经砂纸打磨。9块椎骨共计产生54分骨组织切片(椎体区36片,附件区18片)。应用维氏方法测量骨切片不同区域骨皮质和骨松质的显微硬度值(单位:HV)。采用50g力加载50s、维持12s的标准操作方法测定,每一个区域选取5个有效硬度值,取平均值作为该区域的硬度值。每块椎体选取11个区域,9块椎体共进行495次有效压痕实验并取得显微硬度值,观测不同部位显微骨硬度分布特征。结果:下腰椎硬度范围为20.7~48.8HV,其中皮质骨骨硬度为32.86±5.35HV,松质骨骨硬度为31.25±3.55HV;其中皮质骨平均硬度为32.11±5.17HV,附件区皮质骨平均硬度为33.46±5.43HV;椎体区松质骨平均硬度为30.41±3.07HV,附件区松质骨平均硬度为32.10±3.83HV,附件区皮质骨骨硬度/松质骨骨硬度均高于椎体区,差异具有统计学意义(P<0.05);L3~L5不同受试者下腰椎同一部位的骨硬度数值不同,但是部位之间的变化规律与整体一致。结论:下腰椎不同部位的显微骨硬度值存在显著差异,附件区皮质骨和松质骨骨硬度分别高于椎体区皮质骨和松质骨骨硬度。
        Objectives: To explore the variations and characteristics of micro-hardness of human lower lumbar vertebra. Methods: L3-L5 vertebrae were harvested from three fresh cadaver donors. The soft tissues were removed. According to the two-column theory of spine, each vertebra was divided into the vertebral body area and the attachment area. 4 specimens perpendicular to the upper and lower endplates were cut in the vertebral body area, meanwhile, 1 specimen parallel to the long axis of the vertebral pedicle and 1 spec-imen perpendicular to the superior and inferior articular process was cut in the attachment area by using a high-precision slow-speed saw. All specimens were sanded(Unit: HV). A total of 54 bone specimens was pro-duced from 9 vertebrae(36 specimens in the vertebral body area and 18 specimens in the attachment area).The Vickers method was used to measure the micro-hardness of cortical bone and cancellous bone in differ-ent areas. The standard operation method of loading 50 g for 50 s and maintaining for 12 s was choosen. Five effective hardness values were selected for each region, and the average value was taken as the hardness of the region. 11 regions were selected for each vertebra, and 495 effective indentations were performed. Results: The hardness range of the lower lumbar vertebra was 20.7-48.8 HV, with the average hardness of the cortical bone as 32.86±5.35 HV and the average hardness of the cancellous bone as 31.25±3.55 HV; the average hardness of the cortical bone in the vertebral body area as 32.11 ±5.17 HV, the average hardness of cortical bone in the attachment area as 33.46±5.43 HV; the average hardness of cancellous bone in the ver tebral body area as 30.41 ±3.07 HV. The average hardness of cancellous bone in the attachment area as32.10±3.83 HV. The hardness of cortical bone/cancellous bone in the attachment area was higher than that in the vertebral body area, and the difference was statistically significant(P<0.05). L3-L5 different subjects had different bone hardness in the same region of the lumbar vertebra, but the changes among the regions were consistent with the whole. Conclusions: There are significant differences in the hardness from different regions of the lumbar vertebra. The hardness of the cortical bone and cancellous bone in the attachment area is higher than that of the cortical bone and cancellous bone in the vertebral body area.
引文
1. Rajasekaran S, Kanna RM, Shetty AP. Management of thoracolumbar spine trauma:An overview[J]. Indian J Orthop,2015, 49(1):72-82.
    2 . Reinhold M, Knop C, Beisse R, et al. Operative treatment of traumatic fractures of the thorax and lumbar spine. PartⅡ:surgical treatment and radiological findings[J]. Unfallchirurg,2009, 112(2):149-167.
    3 . Schroeder GD, Kepler CK, Koerner JD, et al. Can a thoracolumbar injury severity score be uniformly applied from T1 to L5 or are modifications necessary?[J]. Global Spine J,2015, 5(4):339-345.
    4 . Seybold EA, Sweeney CA, Fredrickson BE, et al. Functional outcome of low lumbar burst fractures. A multicenter review of operative and nonoperative treatment of L3-L5[J]. Spine,1999, 24(20):2154-2161.
    5 . Jr RAL, Paik H, Eckel TT, et al. Low lumbar burst fractures:a unique fracture mechanism sustained in our current overseas conflicts[J]. Spine J, 2012, 12(9):784-790.
    6 . Hodgskinson R, Currey JD, Evans GP. Hardness, an indicator of the mechanical competence of cancellous bone[J]. J Orthop Res, 1989, 7(5):754-758.
    7 .胡祖圣,李升,刘国彬,等.人体骨骼显微硬度及其相关因素初步研究[J].河北医科大学学报, 2016, 37(1):102-104.
    8 .殷兵,胡祖圣,李升,等.人体骨骼显微硬度研究[J].河北医科大学学报, 2016, 37(12):1472-1474.
    9 . Ohman C, Zwierzak I, Baleani M, et al. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject[J]. Proc Inst Mech Eng H, 2013, 227(2):200-206.
    10 . Dall′Ara E, Schmidt R, Zysset P. Microindentation can discriminate between damaged and intact human bone tissue[J].Bone, 2012, 50(4):925-929.
    11 . Holdsworth F. Review article fractures, dislocations, and fracture-dislocations of the spine[J]. J Bone Joint Surg Am,1970, 52:1534-1551.
    12 . Jr AF. Fractures and ligamentous injuries of the clavicle and its articulation[J]. J Bone Joint Surg Am, 1967, 49(4):774-784.
    13 . Dall′Ara E, Ohman C, Baleani M, et al. The effect of tissue condition and applied load on Vickers hardness of human trabecular bone[J]. J Biomech, 2007, 40(14):3267-3270.
    14 . Ziv V, Wagner HD, Weiner S. Microstructure-microhardness relations in parallel-fibered and lamellar bone[J]. Bone,1996, 18(5):417-428.
    15 . Evans GP, Behiri JC, Currey JD, et al. Microhardness and Young′s modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue[J]. J Mater Sci Mater Med, 1990, 1(1):38-43.
    16 . Broz JJ, Simske SJ, Greenberg AR. Material and compositional properties of selectively demineralized cortical bone[J].J Biomech, 1995, 28(11):1357-1368.
    17 . Blackburn J, Hodgskinson R, Currey JD, et al. Mechanical properties of microcallus in human cancellous bone[J]. J Orthop Res, 2010, 10(2):237-246.
    18 . Johnson WM, Rapoff AJ. Microindentation in bone:hardness variation with five independent variables[J]. J Mater Sci Mater Med, 2007, 18(4):591-597.
    19 . Huja SS, Katona TR, Moore BK, et al. Microhardness and anisotropy of the vital osseous interface and endosseous implant supporting bone[J]. J Orthop Res. 1998, 16(1):54-60.
    20 . Edwards WT, Zheng Y, Ferrara LA, et al. Structural features and thickness of the vertebral cortex in the thoracolumbar spine[J]. Spine, 2001, 26(2):218-225.
    21 . Silva MJ, Wang C, Keaveny TM, et al. Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate[J]. Bone, 1994, 15(4):409-414.
    22 . Weaver JK. The microscopic hardness of bone[J]. J Bone Joint Surg Am, 1966, 48(2):273-288.
    23 . Ms AJF, Eswaran SK, Jekir MG, et al. Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior[J]. J Bone Miner Res, 2010, 24(9):1523-1530.
    24 . Hwang TJ, Kiang C, Paul M. Surgical applications of 3-dimensional printing and precision medicine[J]. JAMA Otolaryngol Head Neck Surg, 2015, 141(4):305-306.
    25 .李玉伟,王海蛟,崔巍,等. 3D打印人工颈椎与钛网置入内固定术治疗下颈椎骨折的比较研究[J].中华创伤骨科杂志,2018, 20(8):705-711.
    26 .蒲兴魏,罗春山,邱冰,等.改良3D打印导航模板辅助寰枢椎椎弓根螺钉置钉的准确性分析[J].中国脊柱脊髓杂志,2017, 27(8):686-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700