高速滚滑下轮轨表层材料的应变率水平估计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ESTIMATION OF STRAIN RATES FOR WHEEL-RAIL SURFACE MATERIALS UNDER HIGH-SPEED ROLLING-SLIDING CONTACT
  • 作者:寇峻瑜 ; 赵鑫 ; 张鹏 ; 温泽峰 ; 金学松 ; 王平
  • 英文作者:KOU Jun-yu;ZHAO Xin;ZHANG Peng;WEN Ze-feng;JIN Xue-song;WANG Ping;State Key Laboratory of Traction Power, Southwest Jiaotong University;Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University;
  • 关键词:高速滚滑 ; 瞬态滚动接触 ; 显式有限元法 ; 应变率 ; 宏观几何不平顺
  • 英文关键词:high-speed rolling-sliding;;transient rolling contact;;explicit finite element method;;strain rate;;macroscopic irregularities
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:西南交通大学牵引动力国家重点实验室;西南交通大学高速铁路线路工程教育部重点实验室;
  • 出版日期:2019-04-22
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(51675444,51775455);; 四川省国际科技合作与交流研发项目(2017HH0038)
  • 语种:中文;
  • 页:GCLX201904027
  • 页数:9
  • CN:04
  • ISSN:11-2595/O3
  • 分类号:246-254
摘要
基于显式有限元法建立了三维轮轨高速瞬态滚动接触模型,详细分析了车轮以300 km/h速度滚过平顺钢轨表面、钢轨波磨(波长30 mm~170 mm)和宏观粗糙度(波长4 mm~30 mm)时钢轨表层0.25 mm~0.5 mm厚材料的平均应变率水平。结果显示:1)空间上,表层单元的应变率最大,时间上,表层材料的最高应变率发生于其进出接触斑的加、减载过程,且法向应变分量的应变率最大,其最值是Von Mises(V-M)等效应变率最值的1.50倍~1.86倍;2)网格大小和时间步长对应变率估计有不可忽略的影响;3)采用0.5 mm网格和0.32μs步长,平顺轮轨表层单元的最大V-M等效应变率为64.1 s~(-1),材料弹塑性无影响,波磨和宏观粗糙度使弹性下的最大V-M等效应变率分别增至92.5 s~(-1)和79.4 s~(-1);采用0.25 mm网格和0.042μs步长的结果约为上述值的1.65倍~1.88倍;4)最大V-M等效应变率随速度线性增加,随摩擦系数的增加而单调递增,牵引系数的影响可忽略。
        A 3D wheel-rail transient rolling contact model has been developed using the explicit finite element method to calculate the average strain rates of rail surface material of 0.25 mm~0.5 mm deep at 300 km/h, for which smooth rail, rail corrugation(wavelength of 30 mm~170 mm) and macro-roughness(wavelength of 4 mm~30 mm) are considered. Obtained results have shown: 1) the highest strain rate occurs on the surface layer spatially, and during the loading or unloading processes of a material particle passing the contact patch; the rate of the normal strain is the largest among all strain components, being 1.50~1.86 times of Von Mises(V-M) strain rate; 2) element size and time step have important effects on strain rate results; 3) the V-M strain rate of smooth surfaces reaches the maximum of 64.1 s-1 when the element size is 0.5 mm and the time step is 0.32 μs, the material elasto-plasticity has no effects, the rail corrugation and macro-roughness result in the maximum V-M strain rate of 92.5 s-1 and 79.4 s-1 in elasticity respectively; the results are 1.65~1.88 times higher when an element size of 0.25 mm and a time step of 0.042 μs are used; 4) the maximum strain rate increases linearly with speed, monotonically with increasing friction coefficient, while the influence of traction coefficient is negligible.
引文
[1]王礼立.高应变率下材料动态力学性能[J].力学与实践,1982,4(1):9―19.Wang Lili.Dynamic mechanical properties of material under high strain rates[J].Mechanics in Engineering,1982,4(1):9―19.(in Chinese)
    [2]Wang L L,Zhou F H,Sun Z J,et al.Rate-dependent damage evolution and its influence on dynamic behavior of materials at high strain rates[J].Journal of Ningbo University(Natural Science&Engineering Edition),2012,25(1):27―33.
    [3]王仁,黄可智,朱兆祥.塑性力学进展[M].北京:中国铁道出版社,1998:119―143.Wang Ren,Huang Kezhi,Zhu Zhaoxiang.Plastic mechanics progress[M].Beijing:China Railway Press,1998:119―143.(in Chinese)
    [4]Boyce B L,Dilmorb M F.The dynamic tensile behavior of tough,ultranhigh-strength steels at strain-sates from0.0002 s-1 to 200 s-1[J].International Journal of Impact Engineering,2009,36(2):263―271.
    [5]Wang G Z,Ren X C,Chen J H.Effects of loading rate on fracture behavior of low-alloy steel with different grain sizes[J].Metallurgical and Materials Transactions A,2004,35(6):1765―1778.
    [6]田越,程育仁,刘学文.高应变率下U71Mn轨钢动态力学性能研究[J].中国铁道科学,1992,13(2):34―42.Tian Yue,Cheng Yuren,Liu Xuewen.Studies on the dynamic behavior of U71Mn rail steel under high strain rates[J].China Railway Science,1992,13(2):34―42.(in Chinese)
    [7]Zhao X,An B Y,Zhao X G,et al.Local rolling contact fatigue and indentations on high-speed railway wheels:Observations and numerical simulations[J].International Journal of Fatigue,2017,103:5―16.
    [8]周家林,吕兵,潘成刚,等.U71Mn钢的流动应力模型研究[J].热加工工业,2013,42(22):77―79.Zhou Jialin,LüBing,Pan Chenggang,et al.Research on flow stress model of U71Mn steel[J].Hot Working Technology,2013,42(22):77―79.(in Chinese)
    [9]任学冲,齐冀,张斌,等.温度及应变速率对高速车轮钢形变行为的影响[J].中国铁道科学,2015,36(3):88―93.Ren Xuechong,Qi Ji,Zhang Bin,et al.Influence of temperature and strain rate on the deformation behavior of high-speed wheel steel[J].China Railway Science,2015,36(3):88―93.(in Chinese)
    [10]Jing L,Han L L,Zhao L M,et al.The Dynamic tensile behavior of railway wheel steel at high strain rates[J].Journal of Materials Engineering&Performance,2016,25(11):4959―4966.
    [11]Jing L,Su X Y,Zhao L M.The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures[J].Results in Physics,2017,7:1452―1461.
    [12]刘学文,程育仁,田越.车轴钢在高应变率下动态力学性能的研究[J].铁道学报,1993,15(2):101―106.Liu Xuewen,Cheng Yuren,Tian Yue.Dynamic mechanical properties of axle steel under high strain rates[J].Journal of Railway,1993,15(2):101―106.(in Chinese)
    [13]王玉玲,成生伟.动车组车轴用钢EA1N的热压缩流变应力行为[J].特殊钢,2017,38(1):63―65.Wang Yuling,Cheng Shengwei.Behavior of hot compressive flow stress of steel EA1N for high speed train axle[J].Special Steel,2017,38(1):63―65.(in Chinese)
    [14]赵鑫,温泽峰,王衡禹,等.三维高速轮轨瞬态滚动接触有限元模型及其应用[J].机械工程学报,2013,49(18):1―7.Zhao Xin,Wen Zefeng,Wang Hengyu,et al.A 3-Dtransient finite element model for high-speed wheel-rail in rolling contact and its application[J].Chinese Journal of Mechanical Engineering,2013,49(18):1―7.(in Chinese)
    [15]Zhao X,Li Z L.The solution of frictional wheel-rail rolling contact with a 3-D transient finite element model:Validation and error analysis[J].Wear,2011,271(1):444―452.
    [16]陆文教,陶功权,王鹏,等.地铁车轮磨耗对轮轨接触特性及动力学性能的影响[J].工程力学,2017,34(8):222―231.Lu Wenjiao,Tao Gongquan,Wang Peng,et al.Influence of wheel wear on wheel-rail contact behavior and dynamic performance of metro vehicle[J].Engineering Mechanics,2017,34(8):222―231.(in Chinese)
    [17]刘超,赵鑫,安博洋,等.钢轨短波长波磨处的高速滚动接触分析[J].润滑与密封,2015,40(8):40―46.Liu Chao,Zhao Xin,An Boyang,et al.Study on high-speed wheel-rail rolling contact on short-pitch rail corrugation[J].Lubrication Engineering,2015,40(8):40―46.(in Chinese)
    [18]谷永磊,赵国堂,王衡禹,等.轨道振动特性对高速铁路钢轨波磨的影响[J].中国铁道科学,2016,37(4):42―47.Gu Yonglei,Zhao Guotang,Wang Hengyu,et al.Effects of track vibration characteristics on rail corrugation of high speed railway[J].China Railway Science,2016,37(4):42―47.(in Chinese)
    [19]寇峻瑜,王衡禹,赵鑫,等.钢轨脱碳层对轮轨瞬态滚动接触行为的影响分析[J].机械工程学报,2018,54(4):101―108.Kou Junyu,Wang Hengyu,Zhao Xin,et al.Influence of rail decarburization layer on wheel-rail transient rolling contact behavior[J].Chinese Journal of Mechanical Engineering,2018,54(4):101―108.(in Chinese)
    [20]赵小罡,赵鑫,温泽峰,等.轮轨黏着系数对钢轨直裂纹瞬态扩展行为的影响[J].工程力学,2018,35(5):239―245.Zhao Xiaogang,Zhao Xin,Wen Zefeng,et al.Influence of wheel-rail adhesion coefficient on transient propagation of a vertical rail crack[J].Engineering Mechanics,2018,35(5):239―245.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700