纳米CaCO_3对其改性木塑复合材料动态流变性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on dynamic rheological properties of modified wood plastic composites by nano CaCO_3
  • 作者:袁宁 ; 罗迎社 ; 胡云楚
  • 英文作者:YUAN Ning;LUO Yingshe;HU Yunchu;College of Civil Engineering,Central South University of Forestry & Technology;Hunan Province Key Laboratory of Engineering Rheology,Central South University of Forestry & Technology;College of Science,Central South University of Forestry & Technology;
  • 关键词:复合材料 ; 纳米碳酸钙 ; 动态流变性能
  • 英文关键词:composites;;nanometer calcium carbonate;;dynamic rheological properties
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:中南林业科技大学土木工程学院;中南林业科技大学工程流变学湖南省重点实验室;中南林业科技大学理学院;
  • 出版日期:2018-07-04 08:55
  • 出版单位:中南林业科技大学学报
  • 年:2018
  • 期:v.38;No.205
  • 基金:国家自然科学基金项目(31670563);; 国家林业公益性行业科研专项(201504503)
  • 语种:中文;
  • 页:ZNLB201807020
  • 页数:6
  • CN:07
  • ISSN:43-1470/S
  • 分类号:123-128
摘要
通过超声波分散改性技术对硅烷偶联剂KH570改性的纳米碳酸钙进行表面改性制备了改性纳米碳酸钙,采用熔融共混法制备了木纤维(WF)/聚丙烯(PP)/纳米碳酸钙三元复合材料。使用ARES旋转流变仪系统研究了复合材料的动态流变性能。结果表明:扫描频率、温度及纳米Ca CO3含量均会对体系的流变性能产生影响。随着扫描频率的增大,体系的储能模量G′与损耗模量G″越大,而复数粘度η*则减小,温度升高时复数粘度和松弛时间降低。当纳米Ca CO3加入量≤15%(质量分数)时,随着纳米Ca CO3含量的增加,WF/PP/纳米Ca CO3复合材料的储能模量、损耗模量和复数黏度逐渐增加且均高于WF/PP,当纳米Ca CO3加入量>15%(质量分数)时,反而呈下降趋势。
        The modified nano-CaCO_3 was prepared from the surface modification of the silane coupling agent KH570-modified nanoCaCO_3 by the technique of ultrasonic dispersion modification, Wood fiber(WF)/polypropylene(PP)/nano calcium carbonate ternary composite was prepared by melt blending.The rheological properties of the composites were investigated by using the system of ARES advanced expansion rheometer. The results showed that the scanning frequency, temperature and nano-CaCO_3 contentl all had the influence on the rheological properties of it. With the increase of scanning frequency, the larger the magnitude of the storage modulus G′ and the loss modulus G″ of it is, and the lower the complex viscosity η*. Complex viscosity and relaxation time decreased when the temperature increased. When the content of nano-CaCO_3 was less than or eaual to 15%(mass fraction), with the increasing of the content of nano-CaCO_3, the storage modulus, loss modulus and complex viscosity of WF/PP/nano-CaCO_3 composites increased and even were higher than that of WF/PP; when the amount of nano-CaCO_3 was greater than 15%(mass fraction), however, it showed a downward trend.
引文
[1]李东方,李黎,李建章.木塑复合材料概述[J].林业机械与木工设备,2013(7):7-16.
    [2]V Hristov.Melt flow instabilities of wood polymer composites[J].Composite Interfaces,2009,16(7-9):731-750.
    [3]何霄,袁光明,肖罗喜.纳米Ca CO3增强木质基复合材料力学性能研究[J].中南林业科技大学学报,2014,34(12):155-158.
    [4]GONG I,YIN B,LI I P,et al.The morphology and mechanical properties of PP/EPDM/nano-Ca CO3 composites Effect of initial mixing state[J].Polymer Bulletin,2013,70(11):21-26.
    [5]Li S,Jarvela P K,Jarvela P A.Melt rheological properties of polypropylene-maleated polypropylene blends I.Steady flow by capillary[J].Journal of Applied Polymer Science,1999,71(10):1641-1648.
    [6]Hristov V N,Vlachopoulos J.Influence of coupling agents on melt flow behavior of natural fiber composites[J].Macromolecular Materials and Engineering,2007,292(5):608-619.
    [7]何洪城,邓腊云,袁光明.Ca CO3粒子对天然纤维增强柔性复合地板性能的影响[J].中南林业科技大学学报,2017,37(11):167-171,186.
    [8]Lo H H K,Chan C M,Zhu S H.Characterization of the lubricant layer at the interface between the extrudate and the die wall during extrusion of HDPE and fluoroelastomer blends by XPS,SIMS,and SEM[J].Polymer Engineering and Science,1999,39(4):721-732.
    [9]Li T Q,Wolcott M P.Rheology of HDPE-wood composites,I.Steady state shear and extensional flow[J].Composites Part A:Applied Science and Manufacturing,2004,35(3):303-311.
    [10]Hristov V N,Vlachopoulos J.Effects of polymer molecular weightand filler particle size on flow behavior of wood polymer composites[J].Polymer Composites,2008,29(8):831-839.
    [11]曾蕾,贺全国,吴朝辉.纳米碳酸钙的制备、表面改性及应用进展[J].精细化工中间体,2009,39(4):1-6.
    [12]缐芳,李巧玲,陈贝,等.不同晶型纳米Al2O3的制备及其对环氧树脂耐磨性能的影响[J].精细化工中间体,2017,47(5):43-48.
    [13]吕一品,吴香菊,焦方舟,等.改性柿子废渣对重金属Pb2+和Cd2+的吸附性能研究[J].河北农业大学学报,2017,40(3):80-86.
    [14]彭钊云,李敏秀,刘德友,等.定向刨花板家具偏心连接件抗拔性能研究[J].家具与室内装饰,2016(5):86-87.
    [15]伍波,张求慧,李建章.木塑复合材料的研究进展及发展趋势[J].材料导报,2009,23(7):62-64.
    [16]Zhou J A,Sheng J S,Wang Y H,et al.Interface Research of Wood/Plastic Composites Modified by Long Chain Segment Block Graft[J].Rare Metal Materials and Engineering,2010,39:390-393.
    [17]Kuruvilla J.S T,Pavithran C.P.Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites[J].Polymer,1996,37(23):5319-5419.
    [18]方征平,蔡国平,曾敏峰.EAA对LLDPE/木粉复合材料的改性[J].中国塑料,1999,13(11):44-46.
    [19]Ali I,Elleithy R.Toughness of HDPE/Ca CO3 microcomposites prepared from masterbatch by melt blend method[J].Journal of Applied Polymer Science,2011,122(5):3303-3315.
    [20]贾仕奎,朱艳,王忠,等.POE-g-MA对纳米Ca CO3/聚乳酸复合材料热及流变性能影响[J].复合材料学报,2017,34(2):256-262.
    [21]Sudipta Naskar,Arun Kumar Chakraborty.Effect of nano materials in geopolymer concrete[J].Perspectives in Science,2016.
    [22]贾冬玲,王梦亚,李顺,等.天然纤维素物质模板制备功能纳米材料研究进展[J].科学通报,2014,15:1369-1381.
    [23]严海彪,陈艳林,潘国元,等.纳米Ca CO3增韧PVC/CPE复合材料的性能研究[J].塑料工业,2004,32(2):31-32.
    [24]朱世东,徐自强,白真权,等.纳米材料国内外研究进展[J].热处理技术与装备,2010,31(4):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700