Excitation of extremely low-frequency chorus emissions: The role of background plasma density
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Excitation of extremely low-frequency chorus emissions: The role of background plasma density
  • 作者:XiongDong ; Yu ; ZhiGang ; Yuan ; ShiYong ; Huang ; Fei ; Yao ; Zheng ; Qiao ; John ; R.Wygant ; Herbert ; O.Funsten
  • 英文作者:XiongDong Yu;ZhiGang Yuan;ShiYong Huang;Fei Yao;Zheng Qiao;John R.Wygant;Herbert O.Funsten;School of Electronic Information, Wuhan University;School of Physics and Astronomy, University of Minnesota;Los Alamos National Laboratory;
  • 英文关键词:low-frequency chorus emissions;;anisotropic temperature instability;;whistler mode;;Van Allen Probes;;linear growth rate
  • 中文刊名:DQXW
  • 英文刊名:地球与行星物理(英文)
  • 机构:School of Electronic Information, Wuhan University;School of Physics and Astronomy, University of Minnesota;Los Alamos National Laboratory;
  • 出版日期:2019-01-15
  • 出版单位:Earth and Planetary Physics
  • 年:2019
  • 期:v.3
  • 基金:supported by the National Natural Science Foundation of China (41874194, 41521063, 41374168)
  • 语种:英文;
  • 页:DQXW201901001
  • 页数:7
  • CN:01
  • ISSN:10-1502/P
  • 分类号:3-9
摘要
Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts.However, the mechanism(s) generating these low-frequency chorus emissions have not been well understood..In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f_(ce)(typical ordinary chorus) to 0.02 f_(ce)(extremely low-frequency chorus).Those extremely low-frequency chorus waves were observed in a rather dense plasma, where the number density N_e was found to be several times larger than has been associated with observations of ordinary chorus waves.For suprathermal electrons whose free energy is supplied by anisotropic temperatures, linear growth rates(calculated using in-situ plasma parameters measured by the Van Allen Probes) show that whistler mode instability can occur at frequencies below 0.1 f_(ce) when the background plasma density N_e increases.Especially when N_e reaches 90 cm–3 or more, the lowest unstable frequency can extend to 0.02 f_(ce) or even less, which is consistent with satellite observations.Therefore, our results demonstrate that a dense background plasma could play an essential role in the excitation of extremely lowfrequency chorus waves by controlling the wave growth rates.
        Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts.However, the mechanism(s) generating these low-frequency chorus emissions have not been well understood..In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f_(ce)(typical ordinary chorus) to 0.02 f_(ce)(extremely low-frequency chorus).Those extremely low-frequency chorus waves were observed in a rather dense plasma, where the number density N_e was found to be several times larger than has been associated with observations of ordinary chorus waves.For suprathermal electrons whose free energy is supplied by anisotropic temperatures, linear growth rates(calculated using in-situ plasma parameters measured by the Van Allen Probes) show that whistler mode instability can occur at frequencies below 0.1 f_(ce) when the background plasma density N_e increases.Especially when N_e reaches 90 cm–3 or more, the lowest unstable frequency can extend to 0.02 f_(ce) or even less, which is consistent with satellite observations.Therefore, our results demonstrate that a dense background plasma could play an essential role in the excitation of extremely lowfrequency chorus waves by controlling the wave growth rates.
引文
Bell,T.F.,Inan,U.S.,Haque,N.,and Pickett,J.S.(2009).Source regions of banded chorus.Geophys.Res.Lett.,36(11),L11101.https://doi.org/10.1029/2009GL037629
    Cattell,C.A.,Breneman,A.W.,Thaller,S.A.,Wygant,J.R.,Kletzing,C.A.,and Kurth,W.S.(2015).Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms:Statistical study.Geophys.Res.Lett.,42(18),7273-7281.https://doi.org/10.1002/2015GL065565
    Chen,L.,R.M.Thorne,V.K.Jordanova,C.-P.Wang,M.Gkioulidou,L.Lyons,and R.B.Horne(2010).Global simulation of EMIC wave excitation during the 21April 2001 storm from coupled RCM-RAM-HOTRAY modeling.J.Geophys.Res.,115,A07209.https://doi.org/10.1029/2009JA015075
    Chen,L.J.,Thorne,R.M.,Li,W.,and Bortnik,J.(2013).Modeling the wave normal distribution of chorus waves.J.Geophys.Res.Space Phys.,118(3),1074-1088.https://doi.org/10.1029/2012JA018343
    Chen,Y.,Reeves,G.D.,and Friedel,R.H.W.(2007).The energization of relativistic electrons in the outer Van Allen radiation belt.Nat.Phys.,3(9),614-617.https://doi.org/10.1038/nphys655
    Funsten,H.O.,Skoug,R.M.,Guthrie,A.A.,MacDonald,E.A.,Baldonado,J.R.,Harper,R.W.,Henderson,K.C.,Kihara,K.H.,Lake,J.E.,…Chen,J.(2013).Helium,oxygen,proton,and electron(HOPE)mass spectrometer for the radiation belt storm probes mission.Space Sci.Rev.,179(1-4),423-484.https://doi.org/10.1007/s11214-013-9968-7
    Gao,Z.L.,Su,Z.P.,Zhu,H.,Xiao,F.L.,Zheng,H.N.,Wang,Y.M.,Shen,C.,and Wang,S.(2016).Intense low-frequency chorus waves observed by Van Allen Probes:Fine structures and potential effect on radiation belt electrons.Geophys.Res.Lett.,43(3),967-977.https://doi.org/10.1002/2016GL067687
    Goldstein,J.,De Pascuale,S.,Kletzing,C.,Kurth,W.,Genestreti,K.J.,Skoug,R.M.,Larsen,B.A.,Kistler,L.M.,Mouikis,C.,and Spence,H.(2014).Simulation of Van Allen Probes plasmapause encounters.J.Geophys.Res.Space Phys.,119(9),7464-7484.https://doi.org/10.1002/2014JA020252
    Gurnett,D.A.,and O'Brien,B.J.(1964).High-latitude geophysical studies with satellite Injun 3:5.Very-low-frequency electromagnetic radiation.J.Geophys.Res.,69(1),65-89.https://doi.org/10.1029/JZ069i001p00065
    Horne,R.B.,and Thorne,R.M.(1993).On the preferred source location for the convective amplification of ion cyclotron waves.J.Geophys.Res.Space Phys.,98(A6),9233-9247.https://doi.org/10.1029/92JA02972
    Huang J.,Gu X.D.,Ni B.B.,Luo Q.,Fu S.,Xiang Z.,and Zhang W.X.(2018).Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons.Earth Planet.Phys.,2(5),371-383.https://doi.org/10.26464/epp2018035
    Jordanova,V.K.,Thorne,R.M.,Li,W.,and Miyoshi,Y.(2010).Excitation of whistler mode chorus from global ring current simulations.J.Geophys.Res.Space Phys.,115(A5),A00F10.https://doi.org/10.1029/2009JA014810
    Katoh,Y.,and Omura,Y.(2011).Amplitude dependence of frequency sweep rates of whistler mode chorus emissions.J.Geophys.Res.Space Phys.,116(A7),A07201.https://doi.org/10.1029/2011JA016496
    Kennel,C.(1966).Low-frequency whistler mode.Phys.Fluids,9(11),2190-2202.https://doi.org/10.1063/1.1761588
    Kim,J.-H.,Lee,D.Y.,Cho,J.H.,Shin,D.K.,Kim,K.C.,Li,W.,and Kim,T.K.(2015).A prediction model for the global distribution of whistler chorus wave amplitude developed separately for two latitudinal zones.J.Geophys.Res.Space Phys.,120(4),2819-2837.https://doi.org/10.1002/2014JA020900
    Kletzing,C.A.,Kurth,W.S.,Acuna,M.,MacDowall,R.J.,Torbert,R.B.,Averkamp,T.,Bodet,D.,Bounds,S.R.,Chutter,M.,…Tyler,J.(2013).The electric and magnetic field instrument suite and integrated science(EMFISIS)on RBSP.Space Sci.Rev.,179(1-4),127-181.https://doi.org/10.1007/s11214-013-9993-6
    LeDocq,M.J.,Gurnett,D.A.,and Hospodarsky,G.B.(1998).Chorus source locations from VLF Poynting flux measurements with the Polar spacecraft.Geophys.Res.Lett.,25(21),4063-4066.https://doi.org/10.1029/1998GL900071
    Li,W.,Bortnik,J.,Thorne,R.M.,and Angelopoulos,V.(2011).Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMISwave observations.J.Geophys.Res.Space Phys.,116(A12),A12205.https://doi.org/10.1029/2011JA017035
    Li,W.,Thorne,R.M.,Bortnik,J.,Tao,X.,and Angelopoulos,V.(2012).Characteristics of hiss-like and discrete whistler-mode emissions.Geophys.Res.Lett.,39(18),L18106.https://doi.org/10.1029/2012GL053206
    Li,W.,Bortnik,J.,Thorne,R.M.,Cully,C.M.,Chen,L.,Angelopoulos,V.,Nishimura,Y.,Tao,J.B.,Bonnell,J.W.,and LeContel,O.(2013).Characteristics of the Poynting flux and wave normal vectors of whistlermode waves observed on THEMIS.J.Geophys.Res.Space Phys.,118(4),1461-1471.https://doi.org/10.1002/jgra.50176
    Li,W.,Chen,L.,Bortnik,J.,Thorne,R.M.,Angelopoulos,V.,Kletzing,C.A.,Kurth,W.S.,and Hospodarsky,G.B.(2015).First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss:Coordinated THEMISand Van Allen Probes observation.Geophys.Res.Lett.,42(2),241-248.https://doi.org/10.1002/2014GL062832
    Meredith,N.P.,Horne,R.B.,Thorne,R.M.,and Anderson,R.R.(2003).Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt.Geophys.Res.Lett.,30(16),1871.https://doi.org/10.1029/2003GL017698
    Meredith,N.P.,Horne,R.B.,Li,W.,Thorne,R.M.,and Sicard-Piet,A.(2014).Global model of low-frequency chorus(f LHR    Moullard,O.,Masson,A.,Laakso,H.,Parrot,M.,Décréau,P.,Santolik,O.,and Andre,M.(2002).Density modulated whistler mode emissions observed near the plasmapause.Geophys.Res.Lett.,29(20),36-1-36-4.https://doi.org/10.1029/2002GL015101
    Olsen R.C.,Shawhan S.D.,Gallagher D.L.,Green J.L.,Chappell C.R.,and Anderson R.R.(1987).Plasma observations at the Earth’s magnetic equator.J.Geophys.Res.Space Phys.,92(A3),2385-2407.https://doi.org/10.1029/JA092iA03p02385
    Omura,Y.,Furuya,N.,and Summers,D.(2007).Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field.J.Geophys.Res.Space Phys.,112(A6),A06236.https://doi.org/10.1029/2006JA012243
    Omura,Y.,Katoh,Y.,and Summers,D.(2008).Theory and simulation of the generation of whistler-mode chorus.J.Geophys.Res.Space Phys.,113(A4),A04223.https://doi.org/10.1029/2007JA012622
    Omura,Y.,Nakamura,S.,Kletzing,C.A.,Summers,D.,and Hikishima,M.(2015).Nonlinear wave growth theory of coherent hiss emissions in the plasmasphere.J.Geophys.Res.Space Phys.,120(9),7642-7657.https://doi.org/10.1002/2015JA021520
    Santolík,O.,Gurnett,D.A.,Pickett,J.S.,Parrot,M.,and Cornilleau-Wehrlin,N.(2003a).Spatio-temporal structure of storm-time chorus.J.Geophys.Res.Space Phys.,108(A7),1278.https://doi.org/10.1029/2002JA009791
    Santolík,O.,Parrot,M.,and Lefeuvre,F.(2013b).Singular value decomposition methods for wave propagation analysis.Radio Sci.,38(1),1010.https://doi.org/10.1029/2000RS002523
    Shprits,Y.Y.,Li,W.,and Thorne,R.M.(2006).Controlling effect of the pitch angle scattering rates near the edge of the loss cone on electron lifetimes.J.Geophys.Res.Space Phys.,111(A12),A12206.https://doi.org/10.1029/2006JA011758
    Shprits,Y.Y.,Subbotin,D.A.,Meredith,N.P.,and Elkington,S.R.(2008).Review of modeling of losses and sources of relativistic electrons in the outer radiation beltⅡ:Local acceleration and loss.J.Atmos.Sol.Terr.Phys.,70(14),1694-1713.https://doi.org/10.1016/j.jastp.2008.06.014
    Shue,J.H.,Chao,J.K.,Fu,H.C.,Russell,C.T.,Song,P.,Khurana,K.K.,and Singer,H.J.(1997).A new functional form to study the solar wind control of the magnetopause size and shape.J.Geophys.Res.Space Phys.,102(A5),9497-9511.https://doi.org/10.1029/97JA00196
    Su,Z.P.,Xiao,F.L.,Zheng,H.N.,and Wang,S.(2011).CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event.Geophys.Res.Lett.,38(6),L06106.https://doi.org/10.1029/2011GL046873
    Su,Z.P.,Zhu,H.,Xiao,F.L.,Zheng,H.N.,Wang,Y.M.,Zong,Q.G.,He,Z.G.,Shen,C.,Zhang,M.,…Baker,D.N.(2015).Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt.J.Geophys.Res.Space Phys.,119(12),10023-10040.https://doi.org/10.1002/2014JA020709
    Su,Z.P.,Liu,N.G.,Zheng,H.N.,Wang,Y.M.,and Wang,S.(2018).Largeamplitude extremely low frequency hiss waves in plasmaspheric plumes.Geophys.Res.Lett.,45(1),565-577.https://doi.org/10.1002/2017GL076754
    Summers,D.,Ni,B.B.,and Meredith,N.P.(2007).Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions:2.Evaluation for VLF chorus,ELF hiss,and electromagnetic ion cyclotron waves.J.Geophys.Res.Space Phys.,112(A4),A04207.https://doi.org/10.1029/2006JA011993
    Summers,D.,Tang,R.X.,and Omura,Y.(2012).Linear and nonlinear growth of magnetospheric whistler mode waves.In D.Summers,et al.(Eds.),Dynamics of the Earth's Radiation Belts and Inner Magnetosphere.Washington:American Geophysical Union.https://doi.org/10.1029/2012GM001298
    Tao,X.,Chen,L.,Liu,X.,Lu,Q.,and Wang,S.(2017).Quasilinear analysis of saturation properties of broadband whistler mode waves.Geophys.Res.Lett.,44(16),8122-8129.https://doi.org/10.1002/2017GL074881
    Thorne,R.M.,Li,W.,Ni,B.,Ma,Q.,Bortnik,J.,Chen,L.,Baker,D.N.,Spence,H.E.,Reeves,G.D.,…Kanekal,S.G.(2013).Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus.Nature,504(7480),411-414.https://doi.org/10.1038/nature12889
    Tsurutani,B.T.,and Smith,E.J.(1974).Postmidnight chorus:A substorm phenomenon.J.Geophys.Res.Space Phys.,79(1),118-127.https://doi.org/10.1029/JA079i001p00118
    Woodroffe,J.R.,Jordanova,V.K.,Funsten,H.O.,Streltsov,A.V.,Bengtson,M.T.,Kletzing,C.A.,Wygant,J.R.,Thaller,S.A.,and Breneman,A.W.(2017).Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume.J.Geophys.Res.Space Phys.,122(3),3073-3086.https://doi.org/10.1002/2015JA022219
    Wygant,J.R.,Bonnell,J.W.,Goetz,K.,Ergun,R.E.,Mozer,F.S.,Bale,S.D.,Ludlam,M.,Turin,P.,Harvey,P.R.,...Tao,J.B.(2013).The electric field and waves instruments on the radiation belt storm probes mission.Space Sci.Rev.,179(1-4),183-220.https://doi.org/10.1007/s11214-013-0013-7
    Xiao,F.L.,Liu,S.,Tao,X.,Su,Z.P.,Zhou,Q.H.,Yang,C.,He,Z.G.,He,Y.H.,Gao,Z.L.,…Blake,J.B.(2017).Generation of extremely low frequency chorus in Van Allen radiation belts.J.Geophys.Res.Space Phys.,122(3),3201-3211.https://doi.org/10.1002/2016JA023561
    Yu,X.D.,Yuan,Z.G.,Wang,D.D.,Huang,S.Y.,Qiao,Z.,Yu,T.,and Yao,F.(2016).Excitation of oblique O+band EMIC waves in the inner magnetosphere driven by hot H+with ring velocity distributions.J.Geophys.Res.Space Phys.,121(11),11101-11112.https://doi.org/10.1002/2016JA023221
    Yu,X.D.,Yuan,Z.G.,Li,H.M.,Huang,S.Y.,Wang,D.D.,Yao,F.,Funsten,H.O.,and Wygant,J.R.(2018).Response of banded whistler mode waves to the enhancement of solar wind dynamic pressure in the inner Earth’s magnetosphere.Geophys.Res.Lett.,45(17),8755-8763.https://doi.org/10.1029/2018GL078849
    Yuan,Z.G.,Yu,X.D.,Huang,S.Y.,Wang,D.D.,and Funsten,H.O.(2017).In situ observations of magnetosonic waves modulated by background plasma density.Geophys.Res.Lett.,44(15),7628-7633.https://doi.org/10.1002/2017GL074681
    Yuan,Z.G.,Yu,X.D.,Huang,S.Y.,Qiao,Z.,Yao,F.,and Funsten,H.O.(2018).Cold ion heating by magnetosonic waves in a density cavity of the plasmasphere.J.Geophys.Res.Space Phys.,123(2),1242-1250.https://doi.org/10.1002/2017JA024919
    Zhou,Q.H.,Xiao,F.L.,Yang,C.,Liu,S.,Kletzing,C.A.,Kurth,W.S.,Hospodarsky,G.B.,Spence,H.E.,Reeves,G.D.,...Wygant,J.R.(2014).Excitation of nightside magnetosonic waves observed by Van Allen Probes.J.Geophys.Res.Space Phys.,119(11),9125-9133.https://doi.org/10.1002/2014JA020481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700