Dynamic recrystallization behavior of Fe–20Cr–30Ni–0.6Nb–2Al–Mo alloy
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic recrystallization behavior of Fe–20Cr–30Ni–0.6Nb–2Al–Mo alloy
  • 作者:Rui ; Luo ; Qi ; Zheng ; Jing-Jing ; Zhu ; Shun ; Guo ; Dong-Sheng ; Li ; Gui-Fang ; Xu ; Xiao-Nong ; Cheng
  • 英文作者:Rui Luo;Qi Zheng;Jing-Jing Zhu;Shun Guo;Dong-Sheng Li;Gui-Fang Xu;Xiao-Nong Cheng;School of Materials Science and Engineering, Jiangsu University;
  • 英文关键词:Alumina-forming austenitic alloy;;Constitutive model;;Dynamic recrystallization;;Critical strain;;Strain-induced grain boundary migration
  • 中文刊名:XYJS
  • 英文刊名:稀有金属(英文版)
  • 机构:School of Materials Science and Engineering, Jiangsu University;
  • 出版日期:2019-02-15
  • 出版单位:Rare Metals
  • 年:2019
  • 期:v.38
  • 基金:financially supported by the National Natural Science Foundation of China (No. 2012AA03A501);; the Ordinary University Graduate Student Scientific Research Innovation Projects by Jiangsu Province (No. KYLX-1027)
  • 语种:英文;
  • 页:XYJS201902012
  • 页数:8
  • CN:02
  • ISSN:11-2112/TF
  • 分类号:89-96
摘要
Single-pass compression tests of an aluminaforming austenite(AFA) alloy(Fe–20Cr–30Ni–0.6Nb–2Al–Mo) were performed using a Gleeble-3500 thermal–mechanical simulator. By combining techniques of electron back-scattered diffraction(EBSD) and transmission electron microscopy(TEM), the dynamic recrystallization(DRX) behavior of the alloy at temperatures of 950–1100 ℃ and strain rates of 0.01–1.00 s~(-1) was investigated. The regression method was adopted to determine the thermal deformation activation energy and apparent stress index and to construct a thermal deformation constitutive model. Results reveal that the flow stress is strongly dependent on temperature and strain rate and it increases with temperature decreasing and strain rate increasing. The DRX phenomenon occurs more easily at comparably higher deformation temperatures and lower strain rates. Based on the method for solving the inflection point via cubic polynomial fitting of strain hardening rate(h) versus strain(e) curves, the ratio of critical strain(ec) to peak strain(ep) during DRX was precisely predicted. The nucleation mechanisms of DRX during thermal deformation mainly include the strain-induced grain boundary(GB)migration, grain fragmentation, and subgrain coalescence.
        Single-pass compression tests of an aluminaforming austenite(AFA) alloy(Fe–20Cr–30Ni–0.6Nb–2Al–Mo) were performed using a Gleeble-3500 thermal–mechanical simulator. By combining techniques of electron back-scattered diffraction(EBSD) and transmission electron microscopy(TEM), the dynamic recrystallization(DRX) behavior of the alloy at temperatures of 950–1100 ℃ and strain rates of 0.01–1.00 s~(-1) was investigated. The regression method was adopted to determine the thermal deformation activation energy and apparent stress index and to construct a thermal deformation constitutive model. Results reveal that the flow stress is strongly dependent on temperature and strain rate and it increases with temperature decreasing and strain rate increasing. The DRX phenomenon occurs more easily at comparably higher deformation temperatures and lower strain rates. Based on the method for solving the inflection point via cubic polynomial fitting of strain hardening rate(h) versus strain(e) curves, the ratio of critical strain(ec) to peak strain(ep) during DRX was precisely predicted. The nucleation mechanisms of DRX during thermal deformation mainly include the strain-induced grain boundary(GB)migration, grain fragmentation, and subgrain coalescence.
引文
[1]Viswanathan R,Bakker W.Materials for ultrasupercritical coal power plants-boiler materials:part 1.J Mater Eng Perform.2001;10(1):81.
    [2]Yamamoto Y,Brady MP,Lu ZP,Maziasz PJ,Liu CT,Pint BA,More KL,Meyer HM,Payzant EA.Creep-resistant,Al2O3-forming austenitic stainless steels.Science.2007;316(5823):433.
    [3]Yamamoto Y,Takeyama M,Lu ZP,Liu CT,Evans ND,Maziasz PJ,Brady MP.Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates.Intermetallics.2008;16(3):453.
    [4]Nie SH,Chen Y,Ren X,Sridharan K,Allen TR.Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water.J Nucl Mater.2010;399(2):231.
    [5]Bei H,Yamamoto Y,Brady MP,Santella ML.Aging effects on the mechanical properties of alumina-forming austenitic stainless steels.Mater Sci Eng,A.2010;527(7):2079.
    [6]Geneva T,Garrett R,Ian B,Paul RM.Accelerated precipitation in the AFA stainless steel Fe-20Cr-30Ni-2Nb-5Al via cold working.Intermetallics.2014;53:120.
    [7]Zhou DQ,Liu XJ,Wu Y,Wang H,Lu ZP.Recrystallization behavior and its influences on mechanical properties of an alumina-forming austenitic stainless steels.Acta Metall Sin.2014;50(10):1217.
    [8]Brady MP,Yamamoto Y,Santella ML,Walker LR.Composition,microstructure,and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels.Oxid Met.2009;72(5):311.
    [9]Brady MP,Magee J,Yamamoto Y,Helmick D,Wang L.Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance.Mater Sci Eng,A.2014;590:101.
    [10]Ebrahimi GR,Keshmiri H,Momeni A,Mazinani M.Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni.Mater Sci Eng,A.2011;528(25):7488.
    [11]Han Y,Qiao GJ,Sun Y,Zou DN.Modeling the constitutive relationship of Cr20Ni25Mo4Cu superaustenitic stainless steel during elevated temperature.Mater Sci Eng,A.2012;539:61.
    [12]Richard KCN,Charles WS,Waldo ES.Hot workability of AISI321 and AISI 304 austenitic stainless steels.J Alloy Compd.2014;595:103.
    [13]Han Y,Liu GW,Zou DN,Liu R,Qiao GJ.Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression.Mater Sci Eng,A.2013;565:342.
    [14]Zhang C,Zhang LW,Shen WF,Liu CR,Xia YN,Li RQ.Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr-Ni-Mo alloyed steel.Mater Des.2016;90:804.
    [15]As M,Godet S,Jacques PJ,Jonas JJ.Texture evolution during the recrystallization of a warm-rolled low-carbon steel.Acta Mater.2006;54(11):3085.
    [16]Jonas JJ,Quelennec X,Jiang L,Martin E.The Avrami kinetics of dynamic recrystallization.Acta Mater.2009;57(9):2748.
    [17]Ji GL,Li Q,Li L.The kinetics of dynamic recrystallization of Cu-0.4 Mg alloy.Mater Sci Eng,A.2013;586:197.
    [18]Poliak EL,Jonas JJ.A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization.Acta Mater.1996;44(1):127.
    [19]Ryan ND,McQueen HJ.Flow stress,dynamic retoration,strain hardening and ductility in hot working of 316 steel.J Mater Process Tech.1990;21(2):177.
    [20]Najafizadeh A,Jonas JJ.Predicting the critical stress for initiation of dynamic recrystallization.ISIJ Int.2006;46(11):1679.
    [21]Zhang BJ,Zhao GP,Jiao LY,Xu GH,Qin HY,Feng D.Influence of hot working process on microstructures of superalloy GH4586.Acta Metall Sin.2005;41(2):351.
    [22]Ju Q,Li DG,Liu GQ.The processing map of hot plastic deformation of a 15Cr-25Ni-Fe base superalloy.Acta Metall Sin.2006;42(2):218.
    [23]Jue Wang.Dong JX,Zhang MC.Nucleation mechanisms of dynamic recrystallization for G3 alloy during hot deformation.Rare Met.2016;35(7):543.
    [24]He A,Xie GL,Zhang HL,Wang XT.Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel.Mater Des.2014;56:122.
    [25]Li WQ,Ma QX.Constitutive modeling for investigating the effects of friction on rheological behavior during hot deformation.Mater Des.2016;97:64.
    [26]Wang CJ,Feng H,Zheng WJ,Song ZG,Yong QL.Dynamic recrystallization behavior and microstructure evolution of AISI304 N stainless steel.J Iron Steel Res Int.2013;20(10):107.
    [27]Zener C,Hollomon JH.Effect of strain rate upon the plastic flow of steel.J Appl Phys.1944;15(1):22.
    [28]Wang X,Burnger E,Gottstein G.Microstructure characterization and dynamic recrystallization in an Alloy 800H.Mater Sci Eng,A.2000;290(1):180.
    [29]Hansen N,Huang X.Microstructure and flow stress of polycrystals and single crystals.Acta Mater.1998;46(5):1827.
    [30]Yu JW,Liu XF,Xie JX.Study of dynamic recrystallization of a Cu-based alloy BFe10-1-1 with continuous columnar grains.Acta Metall Sin.2011;47(4):482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700