Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm,Moho depth and seismicity behavior
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm,Moho depth and seismicity behavior
  • 作者:Javier ; Idárraga-García ; Carlos ; A.Vargas
  • 英文作者:Javier Idárraga-García;Carlos A.Vargas;Research Group on Geophysics,Universidad Nacional de Colombia;Department of Geosciences, Universidad Nacional de Colombia;
  • 英文关键词:Magnetic layer depth;;Curie isotherm;;Heat flow;;Crustal seismicity;;Flat subduction;;South America
  • 中文刊名:GEDS
  • 英文刊名:大地测量与地球动力学(英文版)
  • 机构:Research Group on Geophysics,Universidad Nacional de Colombia;Department of Geosciences, Universidad Nacional de Colombia;
  • 出版日期:2018-01-15
  • 出版单位:Geodesy and Geodynamics
  • 年:2018
  • 期:v.9
  • 基金:the COLCIENCIAS Doctoral Fellowship Program
  • 语种:英文;
  • 页:GEDS201801012
  • 页数:15
  • CN:01
  • ISSN:42-1806/P
  • 分类号:97-111
摘要
We have estimated the DBML(depth to the bottom of the magnetic layer) in South America from the inversion of magnetic anomaly data extracted from the EMAG2 grid. The results show that the DBML values, interpreted as the Curie isotherm, vary between ~10 and ~60 km. The deepest values(>~45) are mainly observed forming two anomalous zones in the central part of the Andes Cordillera. To the east of the Andes, in most of the stable cratonic area of South America, intermediate values(between ~25 and-45 km) are predominant. The shallowest values(<~25 km) are present in northwestern corner of South America, southern Patagonia, and in a few sectors to the east of the Andes Cordillera. Based on these results, we estimated the heat flow variations along the study area and found a very good correlation with the DBML. Also striking is the observation that the thermal anomalies of low heat flow are closely related to segments of flat subduction, where the presence of a cold and thick subducting oceanic slab beneath the continent, with a virtual absence of hot mantle wedge, leads to a decrease in the heat transfer from the deeper parts of the system.After comparing our results with the Moho depths reported by other authors, we have found that the Curie isotherm is deeper than Moho in most of the South American Platform(northward to ~20°S), which is located in the stable cratonic area at the east of the Andes. This is evidence that the lithospheric mantle here is magnetic and contributes to the long wavelength magnetic signal. Also, our results support the hypothesis that the Curie isotherm may be acting as a boundary above which most of the crustal seismicity is concentrated. Below this boundary the occurrence of seismic events decreases dramatically.
        We have estimated the DBML(depth to the bottom of the magnetic layer) in South America from the inversion of magnetic anomaly data extracted from the EMAG2 grid. The results show that the DBML values, interpreted as the Curie isotherm, vary between ~10 and ~60 km. The deepest values(>~45) are mainly observed forming two anomalous zones in the central part of the Andes Cordillera. To the east of the Andes, in most of the stable cratonic area of South America, intermediate values(between ~25 and-45 km) are predominant. The shallowest values(<~25 km) are present in northwestern corner of South America, southern Patagonia, and in a few sectors to the east of the Andes Cordillera. Based on these results, we estimated the heat flow variations along the study area and found a very good correlation with the DBML. Also striking is the observation that the thermal anomalies of low heat flow are closely related to segments of flat subduction, where the presence of a cold and thick subducting oceanic slab beneath the continent, with a virtual absence of hot mantle wedge, leads to a decrease in the heat transfer from the deeper parts of the system.After comparing our results with the Moho depths reported by other authors, we have found that the Curie isotherm is deeper than Moho in most of the South American Platform(northward to ~20°S), which is located in the stable cratonic area at the east of the Andes. This is evidence that the lithospheric mantle here is magnetic and contributes to the long wavelength magnetic signal. Also, our results support the hypothesis that the Curie isotherm may be acting as a boundary above which most of the crustal seismicity is concentrated. Below this boundary the occurrence of seismic events decreases dramatically.
引文
[1]A.Spector,F.S.Grant,Statistical models for interpreting aeromagnetic data,Geophysics 35(2)(1970)293-302,https://doi.org/10.1190/1.1440092.
    [2]B.K.Bhattacharyya,L.K.Leu,Analysis of magnetic anomalies over Yellowstone National Park:mapping of Curie point isothermal surface for geothermal reconnaissance,J.Geophys.Res.80(32)(1975)4461-4465,https://doi.org/10.1029/JB080i032p04461.
    [3]B.K.Bhattacharyya,LK.Leu,Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies,Geophysics 41(1977)41-50,https://doi.org/10.1190/1.1440712.
    [4]R.T.Shuey,D.K.Schellinger,A.C.Tripp,LB.Al,Curie depth determination from aeromagnetic spectra,Geophys.J.Roy.Astron.Soc.50(1977)75-101,https://doi.org/10.1111/j.1365-246X.1977.tb01325.x.
    [5]G.Connard,R.Couch,M.Gemperle,Analysis of aeromagnetic measurements from the Cascade Range in central Oregon,Geophysics 48(1983)376-390,https://doi.org/10.1190/1.1441476.
    [6]Y.Okubo,R.G.Graff,R.O.Hansen,K.Ogawa,H.Tsu,Curie point depths of the Island of Kyushu and surrounding areas,Geophysics 50(3)(1985)481-494,https://doi.org/10.1190/1.1441926.
    [7]R.J.Blakely,Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada,J.Geophys.Res.93(B10)(1988)11817-11832,https://doi.org/10.1029/JB093iB10p11817.
    [8]S.Maus,V.Dimri,Potential field power spectrum inversion for scaling geology,J.Geophys.Res.100(B7)(1995)12605-12616,https://doi.org/10.1029/95JB00758.
    [9]A.Tanaka,Y.Okubo,O.Matsubayashi,Curie point depth based on spectrum analysis of magnetic anomaly data in East and Southeast Asia,Tectonophysics306(3-4)(1999)461-470,https://doi.org/10.1016/S0040-1951(99)00072-4.
    [10]C.A.Finn,D.Ravat,Magnetic depth estimates and their potential for constraining crustal compositions and heat flow in Antarctica,EOS,Trans.Am.Geophys.Union 85(47)(2004).Fall Meeting Abstract T11A-1236.
    [11]D.Ravat,Constructing full spectrum potential-field anomalies for enhanced geodynamical analysis through integration of surveys from different platforms(INVITED),EOS,Trans.Am.Geophys.Union 85(47)(2004).Fall Meeting Abstract G44A-03.
    [12]H.Ross,R.Blakely,M.Zoback,Testing the utilization of aeromagnetic data for the determination of Curie-isotherm depth,EOS,Trans.Am.Geophys.Union85(2004).Fall Meeting Abstract T31A-1287.
    [13]P.Chiozzi,J.Matsushima,Y.Okubo,V.Pasquale,M.Verdoya,Curie point depth form spectral analysis of magnetic data in central-southern Europe,Phys.Earth Planet.In.152(2005)267-276,https://doi.org/10.1016/j.pepi.2005.04.005.
    [14]D.Ravat,A.Pignatelli,I.Nicolosi,M.Chiappini,A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data,Geophys.J.Int.169(2007)421-434,https://doi.org/10.1111/j.1365-246X.2007.03305.x.
    [15]Y.Okubo,J.Matsushima,A.Correia,Magnetic spectral analysis in Portugal and its adjacent seas,Phys.Chem.Earth 28(9-11)(2003)511-519,https://doi.org/10.1016/S1474-7065(03)00070-6.
    [16]T.Nagata,Rock magnetism(second revised edition),Maruzen Co.Ltd.,Tokyo,1961,350 pp.
    [17]P.J.Wasilewski,H.Thomas,M.A.Mayhew,The Moho as a magnetic boundary,Geophys.Res.Lett.6(1979)541-544,https://doi.org/10.1029/GL006i007p00541.
    [18]P.J.Wasilewski,M.A.Mayhew,The Moho as a magnetic boundary revisited,Geophys.Res.Lett.19(1992)2259-2262,https://doi.org/10.1029/92GL01997.
    [19]S.E.Haggerty,Mineralogical constraints on Curie isotherms in deep crustal magnetic anomalies,Geophys.Res.Lett.5(1978)105-108,https://doi.org/10.1029/GL005i002p00105.
    [20]P.B.Toft,S.E.Haggerty,A remnant and induced magnetization model of MAGSAT vector anomalies over the West African craton,Geophys.Res.Lett.13(4)(1986)341-344.
    [21]R.J.Blakely,T.M.Brocher,R.E.Wells,Subduction-zone magnetic anomalies and implications for hydrated forearc mantle,Geology 33(2005)445-448,https://doi.org/10.1130/G21447.1.
    [22]E.C.Ferré,S.A.Friedman,F.Martín-Hernández,J.M.Feinberg,J.A.Conder,D.A.Ionov,The magnetism of mantle xenoliths and potential implications for sub-Moho magnetic sources,Geophys.Res.Lett.40(2013)105-110,https://doi.org/10.1029/2012GL054100.
    [23]D.I.Doser,H.Kanamori,Depth of seismicity in the Imperial Valley Region(1977-1983)and its relationship to heat flow,crustal structure and the October 15,1979,earthquake,J.Geophys.Res.91(Bl)(1986)675-688,https://doi.org/10.1029/JB091iB01p00675.
    [24]C.Bassin,G.Laske,G.Masters,The current limits of resolution for surface wave tomography in North America,EOS Trans.AGU 81(2000).F897.
    [25]M.Feng,M.Assumpcao,S.van der Lee,Group-velocity tomography and lithospheric S-velocity structure of the South American continent,Phys.Earth Planet.In.147(4)(2004)315-331,https://doi.org/10.1016/j.pepi.2004.07.008.
    [26]M.Feng,S.van der Lee,M.Assumpcao,Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves,J.Geophys.Res.112(B04312)(2007),https://doi.org/10.1029/2006JB004449.
    [27]S.Lloyd,S.van Der Lee,G.S.Franca,M.Assumpcao,M.Feng,Moho map of South America from receiver functions and surface waves,J.Geophys.Res.115(B11315)(2010),https://doi.org/10.1029/2009JB006829.
    [28]M.Assumpcao,M.Feng,A.Tassara,J.Julia,Models of crustal thickness for South America from seismic refraction,receiver functions and surface wave tomography,Tectonophysics 609(2013)82-96,https://doi.org/10.1016/j.tecto.2012.11.014.
    [29]A.B.Watts,S.H.Lamb,J.D.Fairhead,J.F.Dewey,Lithospheric flexure and bending of the Central Andes,Earth Planet.Sci.Lett.134(1-2)(1995)9-21,https://doi.org/10.1016/0012-821X(95)00095-T.
    [30]A.Tassara,Interaction between the Nazca and South American plates and formation of the Altiplano-Puna plateau:review of a flexural analysis along the Andean margin(15°-34°S),Tectonophysics 399(1-4)(2005)39-57,https://doi.org/10.1016/j.tecto.2004.12.014.
    [31]M.Perez-Gussinye,A.R.Lowry,A.B.Watts,Effective elastic thickness of South America and its implications for intracontinental deformation,G-cubed 8(Q05009)(2007),https://doi.org/10.1029/2006GC001511.
    [32]A.Tassara,C.Swain,R.Hackney,J.Kirby,Elastic thickness structure of South America estimated using wavelets and Satellite-derived gravity data,Earth Planet.Sci.Lett.253(1-2)(2007)17-36,https://doi.org/10.1016/j.epsl.2006.10.008.
    [33]M.Perez-Gussinye,A.R.Lowry,J.Phipps Morgan,A.Tassara,Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry,G-cubed 9(Q02003)(2008),https://doi.org/10.1029/2007GC001786.
    [34]M.van der Meijde,J.Julia,M.Assumpcao,Gravity derived Moho for South America,J.S.Am.Earth Sci.609(2013)456-467,https://doi.org/10.1016/j.tecto.2013.03.023.
    [35]V.M.Hamza,M.Munoz,Heat flow map of South America,Geothermics 25(6)(1996)599-646,https://doi.org/10.1016/S0375-6505(96)00025-9.
    [36]M.Springer,A.Forster,Heat-flow density across the Central Andean subduction zone,Tectonophysics 291(1-4)(1998)123-139,https://doi.org/10.1016/S0040-1951(98)00035-3.
    [37]M.Springer,Interpretation of heat-flow density in Central Andes,Tectonophysics306(3-4)(1999)377-395,https://doi.org/10.1016/S0040-1951(99)00067-0.
    [38]V.M.Hamza,F.J.S.Silva Dias,A.J.L.Gomes,Z.G.Delgadilho Terceros,Numerical and functional representations of regional heat flow in South America,Phys.Earth Planet.In.152(4)(2005)223-256,https://doi.org/10.1016/j.pepi.2005.04.009.
    [39]M.Arnaiz-Rodriguez,N.Orihuela,Curie point in Venezuela and the Eastern Caribbean,Tectonophysics 590(2013)38-51,https://doi.org/10.1016/j.tecto.2013.01.004.
    [40]C.A.Vargas,J.Idárraga-García,J.M.Rodriguez,Curie point depths in Northwestern South America and the Southwestern Caribbean Sea,in:C.Bartolini,P.Mann(Eds.),Petroleum Geology and Potential of the Colombian Caribbean Margin,vol.108,AAPG Memoir,2015,pp.179-200,https://doi.org/10.1306/13531936M1083642.
    [41]F.Ruiz,A.Introcaso,Curie point depths beneath Precordillera Cuyana and Sierras Pampeanas obtained from spectral analysis of magnetic anomalies,Gondwana Res.7(4)(2004)1133-1142.ISSN:1342-937X.
    [42]S.N.P.Guimaraes,D.Ravat,V.M.Hamza,Combined use of the centroid and matched filtering spectral magnetic methods in determining thermomagnetic characteristics of the crust in the structural provinces of Central Brazil,Tectonophysics 624-625(2014)87-99,https://doi.org/10.1016/j.tecto.2014.01.025.
    [43]S.Maus,U.Barckhausen,H.Berkenbosch,N.Bournas,J.Brozena,V.Childers,F.Dostaler,J.D.Fairhead,C.Finn,R.R.B.von Frese,C.Gaina,S.Golynsky,R.Kucks,H.L(u|¨)hr,P.Milligan,S.Mogren,R.D.M(u|¨)ller,O.Olsen,M.Pilkington,R.Saltus,B.Schreckenberger,E.Thebault,F.Caratori Tontini,EMAG2:a 2-arc min resolution Earth Magnetic Anomaly Grid compiled from Satellite,airborne,and marine magnetic measurements,G-cubed 10(Q08005)(2009),https://doi.org/10.1029/2009GC002471.
    [44]V.A.Ramos,Plate tectonic settings of the Andean Cordillera,Episodes 22(3)(1999)183-190.
    [45]F.Almeida,B.Brito Neves,C.Dal Re Carneiro,The origin and evolution of the South American platform,Earth Sci.Rev.50(1-2)(2000)77-111,https://doi.org/10.1016/S0012-8252(99)00072-0.
    [46]S.Rhea,G.Hayes,A.Villasenor,K.Furlong,A.C.Tarr,H.Benz,Seismicity of the Earth 1900-2007.Nazca Plate and South America,Open-file report 2010-1083-E,USGS,2010,Version 1.0.
    [47]R.Trenkamp,J.Kellogg,J.Freymueller,H.Mora,Wide plate margin deformation,southern Central America and northwestern South America,CASA GPS observations,J.S.Am.Earth Sci.15(2)(2002)157-171,https://doi.org/10.1016/S0895-9811(02)00018-4.
    [48]C.Amante,B.W.Eakins,ETOPO1 1 Arc-Minute Global Relief Model:Procedures,Data Sources and Analysis,NOAA Technical Memorandum NESDIS NGDC-24,National Geophysical Data Center,NOAA,2009,https://doi.org/10.7289/V5C8276M.
    [49]M.-A.Gutscher,W.Spakman,H.Bijwaard,E.R.Engdahl,Geodynamics of flat subduction:seismicity and tomographic constraints from the Andean margin,Tectonics 19(5)(2000)814-833,https://doi.org/10.1029/1999TC001152.
    [50]T.Cahill,B.L.Isacks,Seismicity and the shape of the subducted Nazca plate,J.Geophys.Res.97(B12)(1992)17503-17529,https://doi.org/10.1029/92JB00493.
    [51]E.M.Syracuse,G.A.Abers,Global compilation of variations in slab depth beneath arc volcanoes and implications,G-cubed 7(5)(2006)1-18,https://doi.org/10.1029/2005GC001045.
    [52]U.Cordani,K.Sato,W.Teixeira,C.Tassinari,M.Basei,Crustal evolution of the South American platform,in:U.Cordani,et al.(Eds.),Evolution of South America,31st International Geological Congress,2000,pp.19-40.Rio de Janeiro.
    [53]M.Assumpcao,M.Schimmel,C.Escalante,J.R.Barbosa,M.Rocha,L.V.Barros,Intraplate seismicity in SE Brazil:stress concentration in lithospheric thin spots,Geophys.J.Int.159(1)(2004)390-399,https://doi.org/10.1111/j.1365-246X.2004.02357.x.
    [54]T.E.Jordan,B.L.Isacks,R.W.Allmendinger,J.A.Brewer,V.A.Ramos,C.J.Ando,Andean tectonics related to geometry of the subducted Nazca plate,Geol.Soc.Am.Bull.94(3)(1983)341-361,https://doi.org/10.1130/0016-7606(1983)94<341:ATRTGO>2.0.CO;2.
    [55]R.W.Allmendinger,T.E.Jordan,S.M.Kay,B.L Isacks,The evolution of the Altiplano-Puna Plateau of the Central Andes,Annu.Rev.Earth.Planet.Sci.25(1997)139-174,https://doi.org/10.1146/annurev.earth.25.1.139.
    [56]W.D.Pennington,Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America,J.Geophys.Res.86(B11)(1981)10753-10770,https://doi.org/10.1029/JB086iB11p10753.
    [57]M.-A.Gutscher,J.Malavieille,S.Lallemand,J.-Y.Collot,Tectonic segmentation of the North Andean margin:impact of the Carnegie Ridge collision,Earth Planet.Sci.Lett.168(1999)255-270,https://doi.org/10.1016/S0012-821X(99)00060-6.
    [58]J.M.Salazar,C.A.Vargas,Fractal dimension and seismotectonic deformation rates along an inter-plate setting:seismic regime along the Caribbean plate boundary zone,in:C.Bartolini,P.Mann(Eds.),Petroleum Geology and Potential of the Colombian Caribbean Margin,vol.108,AAPG Memoir,2015,pp.271-294,https://doi.org/10.1306/13531940M1083644.
    [59]R.J.Blakely,Potential Theory in Gravity and Magnetic Applications,Cambridge University Press,New York,1995,p.81-90.
    [60]International Seismological Centre,On-line Bulletin,http://www.isc.ac.uk,International Seismological Centre,Thatcham,United Kingdom(2012).
    [61]S.Bonvalot,G.Balmino,A.Briais,M.Kuhn,A.Peyrefitte,N.Vales,R.Biancale,G.Gabalda,F.Reinquin,M.Sarrailh,World Gravity Map,Commission for the Geological Map of the World.Eds,BGI-CGMW-CNES-IRD,Paris,2012.
    [62]P.J.Wasilewski,Magnetic properties of mantle xenoliths and the magnetic character of the crust-mantle boundary,in:P.H.Nixon(Ed.),Mantle Xenoliths,John Wiley and Sons Ltd.,London,1987,pp.577-588.
    [63]E.C.Ferré,S.A.Friedman,F.Martín-Hernández,J.L.Till,D.A.Ionov,J.A.Conder,Eight good reasons why the uppermost mantle could be magnetic,Tectonophysics 624-625(2014)3-14,https://doi.org/10.1016/j.tecto.2014.01.004.
    [64]R.G.Park,W.Jaroszewski,Craton tectonics,stress and seismicity,in:P.L Hancock(Ed.),Continental Deformation,Pergamon,Oxford,1994,pp.220-222.
    [65]S.Turner,M.Regelous,S.Kelley,C.Hawkesworth,M.Mantovani,Magmatism and continental break-up in the South Atlantic:high precision~(40)Ar-~(39)Ar geochronology,Earth Planet.Sci.Lett.121(3-4)(1994)333-348,https://doi.org/10.1016/0012-821X(94)90076-0.
    [66]C.J.Hawkesworth,K.Gallagher,L Kirstein,M.S.M.Mantovani,D.W.Peate,S.P.Turner,Tectonic controls on magmatism associated with continental breakup:an example from the Parana-Etendeka Province,Earth Planet.Sd.Lett 179(2)(2000)335-349,https://doi.org/10.1016/S0012-821X(00)00114-X.
    [67]A.De Min,E.M.Piccirillo,A.Marzoli,G.Bellieni,P.R.Renne,M.Ernesto,LS.Marques,The Central Atlantic Magmatic Province(CAMP)in Brazil:petrology,geochemistry,~(40)Ar/~(39)Ar ages,paleomagnetism and geodynamic implications,Geophys.Mag.Monogr.136(2003)91-128,https://doi.org/10.1029/136GM06.
    [68]G.P.Hayes,D.J.Wald,R.L Johnson,Slab1.0:a three-dimensional model of global subduction zone geometries,J.Geophys.Res.117(B01302)(2012),https://doi.org/10.1029/2011JB008524.
    [69]S.G.Henry,H.N.Pollack,Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru,J.Geophys.Res.93(B12)(1988)15153-15162,https://doi.org/10.1029/JB093iB12p15153.
    [70]A.Hampel,The migration history of the Nazca Ridge along the Peruvian active margin:a re-evaluation,Earth Planet.Sci.Lett.203(2)(2002)665-679,https://doi.org/10.1016/S0012-821X(02)00859-2.
    [71]B.Bishop,S.Beck,G.Zandt,A.Kumar,L.Wagner,M.Long,H.Tavera,Receiver function study of the Peruvian flat-slab region:Initial results from PULSE,AGU Fall Meeting,2013.San Francisco.
    [72]M.-A.Gutscher,J.-L.Olivet,D.Aslanian,J.-P.Eissen,R.Maury,The“lost Inca Plateau":cause of flat subduction beneath Peru?Earth Planet.Sci.Lett.171(3)(1999)335-341,https://doi.org/10.1016/S0012-821X(99)00153-3.
    [73]R.Sibson,Fault zone models,heat flow,and the depth distribution of earthquakes in the continental crust of the United States,Bull.Seismol.Soc.Am.72(1)(1982)151-163.
    [74]A.Tanaka,Y.Ishikawa,Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness:the Japanese islands case study,Phys.Earth Planet.In.152(4)(2005)257-266,https://doi.org/10.1016/j.pepi.2005.04.011.
    [75]C.-F.Li,Y.Lu,J.Wang,A global reference model of Curie point depths based on EMAG2,Scd.Rep.7(2017)45129,https://doi.org/10.1038/srep45129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700