基因编辑技术及其在生物医学领域应用的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gene Editing Technology and Its Application Progress in Biomedical Field
  • 作者:张唯伟 ; 兰文军
  • 英文作者:ZHANG Wei-wei;LAN Wen-jun;Institute of Biological Reagent and Biomedical Engineering,Qilu University of Technology;
  • 关键词:基因编辑 ; 研究进展 ; 生物医学
  • 英文关键词:gene editing;;research progress;;biomedicine
  • 中文刊名:SQGX
  • 英文刊名:Journal of Qilu University of Technology(Natural Science Edition)
  • 机构:齐鲁工业大学生物试剂与生物医学工程研究所;
  • 出版日期:2017-08-25 14:55
  • 出版单位:齐鲁工业大学学报(自然科学版)
  • 年:2017
  • 期:v.31;No.124
  • 基金:国家自然科学基金(81171413)
  • 语种:中文;
  • 页:SQGX201704007
  • 页数:5
  • CN:04
  • ISSN:37-1498/N
  • 分类号:34-38
摘要
基因编辑技术的发展使人们能够在细胞及分子水平上对人类疾病进行深入的研究,其能够修改基因序列以及调控基因在不同类型细胞中的表达。目前的基因编辑工具主要有三种:ZFN技术、TALEN技术、CRISPRCas9技术,基因编辑技术在药物发现模型、基因工程药物糖基化、工程细胞改造与优化、基因治疗等生物医学领域有广阔的应用前景。
        The development of the new technology of directed gene editing has made it possible to study human diseases at the cellular and molecular levels,it can introduce modifications in gene sequences and regulate gene expression in different types of cells. There are three main tools for gene editing: ZFN technology,TALEN technology,CRISPR-Cas9 technology,gene editing technology has broad application prospects in the biomedical fields of the model of drug discovery,glycosylation of genetic engineering drugs,engineering cell transformation and optimization,gene therapy.
引文
[1]XIAO A,HU Y Y,WANG W Y,et al.Artificial zinc finger nucleic acid enzyme mediated genome site modification technology[J].Hereditas,2011.33(7):665-683.
    [2]KLUQ A.The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation[J].Quat Rev Biophys,2010,43(01):1-21.
    [3]OSBOM M J,DEFEO A P,BLAZAR B R,et al.Synthetic zinc finger nuclease design and rapid assembly[J].Hum Gene Ther,2011,22(9):1155-1165.
    [4]KIM C A,BERQ J M.Aresolution crystal structure of a designed zinc finger protein bound to DNA[J].Nat Struct Biol,1996,3(11):940-945.
    [5]YAO Y,NASHUN B,ZHOU T,et al.Generation of CD34+cells from CCR5-disrupted human embryonic and induced pluripotent stem cells[J].Hum Gene Ther,2012,5(23):238-242.
    [6]CANTOS C,FRANCISCO P,TRIJATMIKO K R,et al.Identification of“safe harbor”loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair[J].Front Plant Sci.,2014,5(26):302.
    [7]ZHANG W,WANG D,LIU S,et al.Multiple copies of a linear donor fragment released in situ from a vector improve the efficiency of zinc-finger nuclease-mediated genome editing[J].Gene Ther,2014,21(3):282-288.
    [8]BOCH J,SCHOLZE H,SCHORNACK S,et al.Breaking the code of DNA binding specificity of TAL typeⅢeffectors[J].Science,2009,326(5959):1509-1512.
    [9]张金脉,任兆瑞.TALENs:一种新的基因定点修饰技术[J].生命科学,2013,25(1):126-132.
    [10]KIM D,KIM J,HUR J K,et al.Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J].Nat Biotechnol,2016,34(6):863-868.
    [11]JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
    [12]GO D E,STOTTMANN R W.The impact of CRISPR/Cas9-based genomic engineering on biomedical research and medicine[J].Curr Mol Med,2016,16(4):343-352.
    [13]JINEK M,CHYLINSKI K,Fonfara I,et al.A programmable dual RNAguided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
    [14]SEEGER T,PORTEUS M,WU J C.Genome editing in cardiovascular biology[J].Circ Res,2017,120(5):778-780.
    [15]TYCKO J,MYER V E,HSU P D.Methods for optimizing CRISPRCas9 genome editing specificity[J].Mol Cell,2016,63(3):355-370.
    [16]PELLAGATTI A,DOLATSHAD H,VALLETTA S,et al.Application of CRISPR/Cas9 genome editing to the study and treatment of disease[J].Archives of Toxicology,2015,89(7):1023-1034.
    [17]DOETSCHMAN T,GEORGIEVA T.Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease[J].Circ Res,2017,120(5):876-894.
    [18]ZHANG X H,TEE L Y,WANG X G,et al.Off-target effects in CRISPR/Cas9-mediated genome engineering[J].Mol Ther Acids.2015,4(264):1038-1046.
    [19]YUAN W M,LIAN F Z,XING X H.Genome modification by CRISPR/Cas9[J].FEBS Journal,2014,281(23):5186-5193.
    [20]BOLUKBASI M F,GUPTA A,OIKEMUS S,et al.DNA-bindingdomain fusions enhance the targeting range and precision of Cas 9[J].Nat Methods,2015,12(12):1150-1156.
    [21]PELLAGATTI A,DOLATSHAD H,YIP B H,et al.Application of genome editing technologies to the study and treatment of hematological disease[J].Advances in Biological Regulation,2016,60(9):122-134.
    [22]LIU H,CHEN Y,NIU Y,et al.TALEN-Mediated Gene Mutagenesis in Rhesus and Cynomolgus Monkeys[J].Cell Stem Cell,2014,14(3):323-328.
    [23]PABLO P P,ZHENG Y C.Biomedical applications of gene editing[J].Hum Genet,2016,135(9):967-969.
    [24]DING Q,LEE Y K,SCHAEFER E A,et al.A TALEN genome editing system for generating human stem cell-based disease models[J].Cell Stem Cell,2013,13(2):238-251.
    [25]SUN L,LUTZ B M,TAO Y X.The CRISPR/Cas9 system for gene editing and its potential application in pain research.[J].HHS Public Access,2016,1(3):22-33.
    [26]BIAN X C,YANG Z L,FENG H L.Establishment and validation of human cancer cell lines with stable Cas9 expression.[J].Zhonghua Bing Li Xue,2017,46(1):43-48.
    [27]SLIWKOWSKI M X,MELLMAN I.Antibody therapeutics in cancer[J].Science,2013,341(6151):1192-1198.
    [28]STAGG J,LOI S,DISEKERA U,et al.Anti-Erb B-2 m Ab therapy requires typeⅠandⅡinterferons and synergizes with anti-PD-1or anti-CD137 m Ab therapy[J].Proc Natl Acad Sci USA,2011,108(17):7142-7147.
    [29]MALPHETTES L,FREYVERT Y,CHANG J,et al.Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce compieteiy nonfucosylated antibodies[J].Biotechnol Bioeng,2010,106(05):774-783.
    [30]YAMANE O N,KINOSHITA S,INOUE U M,et al.Establishment of FUT8 knockout chinese hamster ovary cells:an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity[J].Biotechnol Bioeng,2004,87(5):614-622.
    [31]SEALOVER N R,DAS A M,BROOKS J K,et al.Engineering chinese hamster ovary(CHO)cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease(ZFN)-mediated geneknockout of mannosyⅠ(alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase(Mgatl)[J].Biotechnol,2013,167(1):24-32.
    [32]RAHMAN S H,MAEDE R M L,JOUNG J K,et al.Zinc-finger nucleases for somatic gene therapy:the next frontier[J].Human Gene Therapy,2011,22(10):1089-2011.
    [33]LIU P Q,CHAN E M,COST G J,et al.Generation of a triplegene knockout mammalian cell line using engineered zinc-finger nucleases[J].Biotechnol Bioeng,2010,106(1):97-105.
    [34]COST G J,FREYVERT Y,VAFIADIS A,et al.BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells[J].Biotechnol Bioeng,2010,105(2):330-340.
    [35]CHARLES A G,PABLO P P.Activating human genes with zinc finger proteins,transcription activator-like effectors and CRISPR/Cas9 for genetherapy and regenerative medicine[J].Expert Opinion on Therapeutic Targets,2014,18(8):835-839.
    [36]MAEDER M L,GERSBACH C A.Genome editing technologies for Gene and Cell Therapy[J].Molecular Therapy,2016,24(3):430-446.
    [37]WANG C X,CANNON P M.The clinical applications of genome editing in HIV.[J].Blood,2016,127(21):46-52.
    [38]SAVIC N,SCHWANK G.Advances in therapeutic CRISPR/Cas9genome editing[J].Transl Res,2016,168(10):15-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700