钛合金表面CrAlTiN单层涂层冲蚀损伤机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Erosion Damage Mechanism of the Single CrAlTiNi Coating on the Titanium Alloy Surface
  • 作者:杨竹芳 ; 耿明睿 ; 何光宇 ; 李玉琴
  • 英文作者:YANG Zhu-fang;GENG Ming-rui;HE Guang-yu;LI Yu-qin;National Key Laboratory of Plasma Dynamics, Air Force Engineering University;
  • 关键词:砂尘冲蚀 ; TC4钛合金 ; CrAlTiN单层涂层 ; 损伤机理
  • 英文关键词:sand erosion;;TC4 titanium alloy;;single CrAlTiN coating;;damage mechanism
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:空军工程大学等离子体动力学国家级重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国防科技重点实验室基金(61422020702162202)~~
  • 语种:中文;
  • 页:BMJS201901034
  • 页数:6
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:269-274
摘要
目的主要开展钛合金表面制备Cr Al Ti N单层涂层后的撞击实验,探究不同条件下钛合金表面的冲蚀损伤规律,揭示钛合金表面的冲蚀损伤机理。方法采用多弧离子镀技术在TC4钛合金表面制备Cr Al Ti N单层涂层,并利用空气炮发射速度为300m/s的单个钢珠,在不同角度(30°、45°、60°、90°)下对涂层进行撞击损伤模拟。采用扫描电镜对撞击形貌进行观察,结合撞击表面的元素分析结果,探究钢珠撞击涂层表面的冲蚀损伤机理。结果 90°攻角下,涂层的破损主要由撞击产生的裂纹和涂层表面"液滴"的剥落共同作用引起。45°、30°攻角与60°攻角的撞击相似,损伤主要由两部分组成:一部分是垂直作用产生的裂纹和撞击导致的液滴剥落引起的涂层损伤;另一部分是切向作用引起的摩擦磨损和摩擦过程中产生的温度效应导致的钢珠熔覆。能谱图点44处主要含有Fe2O3、Ti N两种物质,说明该点的涂层已经破坏,并且在切削磨损的同时,钢珠撞击的损伤还伴随着氧化磨损。结论在300m/s的速度下,冲蚀损伤最严重部位为钢珠与涂层接触部位。冲蚀过程中会因温度效应使钢珠熔覆在涂层表面,涂层表面越粗糙,则熔覆物越多。涂层的损伤主要源于垂直分量导致裂纹的萌生和切向的犁削作用。
        The work aims to carry out the impact test of single CrAlTiN coating prepared on the titanium alloy surface, so as to investigate and reveal the rules and mechanism of erosion damage on the titanium alloy surface. The single CrAlTiN coating was prepared on the TC4 titanium alloy surface by multi-arc ion plating and the erosion damage of the coating was simulated by firing a sphere projectile with the light gas gun at a nominal velocity of 300 m/s from different impact angles(30°, 45°, 60° and 90°). The impacted morphology was observed by scanning electro microscopy, and then the erosion damage mechanism was discussed according to the results of the element analysis. The erosion damage under 90° impact was mainly attributed to the compound effect of the crack generated from the impact and peeling of "liquid drop" on the surface. The erosion damage under 30° was similar with that under 45° and 60°, including two parts, namely the crack caused by the vertical impact and peeling of liquid drop on the surface and the friction damage caused by the tangential impact and the cladding materials resulted from the local temperature rise during the impact processing. The point 44 in the energy spectrum had two substances of Fe2O3 and TiN, which indicated that the coating at this point was desroyed and the damage included cutting wear, impact of steel ball and oxidative wear. At 300 m/s, the region with the most serious erosion damage is the contact location between the sphere and the coating; the sphere cladding material due to the local temperature is formed on the coating surface, and the rougher the coating surface is, the more the cladding materials are; and the erosion damage of coating is mainly attributed to the compound effects of the crack initiation due to the vertical impact and the tangential plough cutting action.
引文
[1]HENDERSON R E,HENNECKE D K.Erosion corrosion and foreign object damage effects in gas turbines[R].Rotterdam:ADA,1998.
    [2]FEUERSTEIN A,KLEYMAN A.Ti-N multilayer systems for compressor airfoil sand erosion protection[J].Surface&coatings technology,2009,204:1092-1096.
    [3]LAGUNA-CAMACHO J R.Solid particle erosion on coatings employed to protect die casting molds[J].Progress in organic coatings,2012,74:750-757.
    [4]MICHAEL W R,TIMOTHY J E.Erosion performance and characterization of nanolayer(Ti,Cr)N hard coatings for gas turbine engine compressor blade applications[J].Surface&coatings technology,2011,206:464-472.
    [5]FINNIE I.Some reflections on the past and future of erosion[J].Wear,1995,186-187(95):1-10.
    [6]HUTCHINGS I M.Tribology:Friction and wear of engineering materials[M].Second edition.Boulevard:Elsevier Limited,1992.
    [7]BITTER J G A.A study of erosion phenomena:Part II[J].Wear,1963,6(3):169-190.
    [8]BITTER J G A,BITTER J G A.A study of erosion phenomena[J].Wear,1963,6(1):5-21.
    [9]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.MA Ying,REN Jun,LI Yuan-dong,et al.Development of research on erosion of materials[J].Journal of Lanzhou University of Technology,2005,31(1):21-25.
    [10]COOK R F,PHARR G M.Direct observation and analysis of indentation cracking in glasses and ceramics[J].Journal of the American ceramic society,1990,73(73):787-817.
    [11]LAWN B R,MARSHALL D B,WIEDERHORN S M.Strength degradation of glass impacted with sharp particles:II,tempered surfaces[J].Journal of the American ceramic society,1979,62(1-2):71-74.
    [12]HEDENQVIST P,BROMARK M,OLSSON M,et al.Mechanical and tribological characterization of lowtemperature deposited PVD Ti N coatings[J].Surface&coatings technology,1994,63(2):115-122.
    [13]LUGSCHEIDER E,KR?MER G,BARIMANI C,et al.PVD coatings on aluminium substrates[J].Surface&coatings technology,1995,74-75(95):497-502.
    [14]吴凤芳.PVD氮化物涂层的冲蚀磨损特性及机理的研究[D].山东:山东大学,2011.WU Feng-fang.Erosion wear performance and mechanism of PVD nitride coatings[D].Shandong:Shandong University,2011.
    [15]吴先映,廖斌,张旭,等.MEVVA离子束技术的发展及应用[J].北京师范大学学报(自然科学版),2014,50(2):132-138.WU Xian-ying,LIAO Bin,ZHANG Xu,et al.Development and applications of MEVVA technique at BNU:Areview[J].Journal of Beijing Normal University(natural science),2014,50(2):132-138.
    [16]BORAWSKI B,SINGH J,TODD J A,et al.Multi-layer coating design architecture for optimum particulate erosion resistance[J].Wear,2011,271(11-12):2782-2792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700