强亲铁元素高温地球化学与天体化学及研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-temperature Geochemistry and Cosmochemistry of Highly Siderophile Elements and Their Research Progresses
  • 作者:徐勇 ; 刘金高 ; 田功成 ; 刘焕欣 ; 蔡荣华 ; 高若菡
  • 英文作者:XU Yong;LIU Jin-gao;TIAN Gong-cheng;LIU Huan-xin;CAI Rong-hua;GAO Ruo-han;State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences;
  • 关键词:强亲铁元素 ; Re-Pt-Os同位素 ; 高温地球化学 ; 天体化学 ; 行星演化
  • 英文关键词:Highly siderophile elements(HSE);;Re-Pt-Os isotope;;high-temperature geochemistry;;cosmochemistry;;planetary evolution
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国地质大学(北京)地质过程与矿产资源国家重点实验室;
  • 出版日期:2019-03-10
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金资助项目(41822301,41730214)
  • 语种:中文;
  • 页:KYDH201902011
  • 页数:27
  • CN:02
  • ISSN:52-1102/P
  • 分类号:77-102+249
摘要
强亲铁元素(HSE)包括铂族元素(PGE):Os、Ir、Ru、Rh、Pt、Pd)及Re、Au,它们对金属与硫化物相具有强烈的亲和性,这种独特性质使其成为高温地球化学与天体化学研究中的优秀示踪剂。此外,强亲铁元素内含两种长半衰期(~(187)Re-~(187)Os,t_(1/2)=41.6 Ga;~(190)Pt-~(186)Os,t_(1/2)=469 Ga)和一种短半衰期(~(107)Pd-~(107)Ag,t_(1/2)=6.5 Ma)放射性同位素衰变体系,可以用作地球与天体演化的时钟。在地幔部分熔融或分离结晶期间,PPGE(Rh、Pd、Pt)与Re、Au倾向于进入熔体相,IPGE(Os、Ir、Ru)则更多保留在残余固相。因此,通过地幔包体、地幔构造岩、镁铁质与超镁铁质火山岩的HSE丰度与Os同位素可约束地幔组成和相应的岩浆过程,以及制约地球早期演化过程。随着分析技术的改进,HSE与Re-Pt-Os同位素在行星增生与分异、核幔相互作用、壳幔分异、洋陆转换、克拉通形成与破坏、岩石圈俯冲再循环以及Ni-Cu-PGE矿床成因等方面均显示了巨大的应用潜力。
        The highly siderophile elements(HSE) comprise platinum group elements(PGE: Os, Ir, Ru, Rh, Pd, Pt) and Re, Au. Their unique strong affinity for metallic and sulfide phases has made them outstanding tracers for high-temperature geochemistry and cosmochemistry. In addition, two kinds of long-lived(~(187)Re-~(187)Os, t_(1/2)=41.6 Ga; ~(190)Pt-~(186)Os, t_(1/2)=469 Ga) and one kind of short-lived(~(107)Pd-~(107)Ag, t_(1/2)=6.5 Ma) radioactive isotope decay systems within the HSE can be used as chronometers for evolutions of the earth and planets. During partial melting of mantle or fractional crystallization of magma, Re, Au and PPGE(Rh, Pd, Pt) are normally preferred to be in the melt, while IPGE(Os, Ir, Ru) are preferentially retained in residual solid phases. Therefore, the terrestrial mantle composition and associated magmatic processes and the early evolution processes of the Earth can be constrained by studying the HSE abundances and Os isotopes of mantle xenoliths, mantle tectonites, and mafic and ultramafic volcanic rocks. Along with recent advances in analytical technology, the applications of HSE geochemical and Re-Pt-Os isotopic systematics have great potential in, but not limited to, researches on the planetary accretion and differentiation, core-mantle interaction, crust-mantle differentiation, ocean-continent transformation, formation and destruction of craton, recycling of subducted lithosphere, and genesis of the Ni-Cu-PGE ore deposit.
引文
Alard O, Griffin W L, Lorand J P, Jackson S E, O'Reilly S Y. 2000. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature, 407(6806): 891-894
    Alard O, Griffin W L, Pearson N J, Lorand J P, O'Reilly S Y. 2002. New insights into the Re-Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth and Planetary Science Letters, 203(2): 651-663
    Alard O, Lorand J P, Reisberg L, Bodinier J L, Dautria J M, O'Reilly S Y. 2011. Volatile-rich metasomatism in montferrier xenoliths (Southern France): Implications for the abundances of chalcophile and highly siderophile elements in the subcontinental mantle. Journal of Petrology, 52(10): 2009-2045
    Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208(4448): 1095-1108
    Alves S, Schiano P, Capmas F, Allègre C J. 2002. Osmium isotope binary mixing arrays in arc volcanism. Earth and Planetary Science Letters, 198(3-4): 355-369
    Arevalo R Jr, McDonough W F. 2008. Tungsten geochemistry and implications for understanding the Earth's interior. Earth and Planetary Science Letters, 272(3-4): 656-665
    Arndt N T. 2003. Komatiites, kimberlites, and boninites. Journal of Geophysical Research: Solid Earth, 108(6): 2293
    Aulbach S, Griffin W L, Pearson N J, O'Reilly S Y. 2013. Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chemical Geology, 352: 153-169
    Aulbach S, Viljoen K S. 2015. Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: From convecting mantle source to palaeo-ocean floor and back. Earth and Planetary Science Letters, 431: 274-286
    Aulbach S, Mungall J E, Pearson D G. 2016. Distribution and processing of highly siderophile elements in cratonic mantle lithosphere. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia: Mineralogical Society of America, 239-304
    Büch l A, Brügmann G, Batanova V G, Münker C, Hofmann A W. 2002. Melt percolation monitored by Os isotopes and HSE abundances: A case study from the mantle section of the Troodos Ophiolite. Earth and Planetary Science Letters, 204(3-4): 385-402
    Büchl A, Brügmann G E, Batanova V G, Hofmann A W. 2004. Os mobilization during melt percolation: The evolution of Os isotope heterogeneities in the mantle sequence of the troodos ophiolite, Cyprus. Geochimica et Cosmochimica Acta, 68(16): 3397-3408
    Baker J A, Jensen K K. 2004. Coupled 186Os-187Os enrichments in the Earth's mantle - core-mantle interaction or recycling of ferromanganese crusts and nodules? Earth and Planetary Science Letters, 220(3-4): 277-286
    Ballhaus C, Bockrath C, Wohlgemuth-Ueberwasser C, Laurenz V, Berndt J. 2006. Fractionation of the noble metals by physical processes. Contributions to Mineralogy and Petrology, 152(6): 667-684
    Barnes S J, Naldrett A J, Gorton M P. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology, 53(3-4): 303-323
    Barnes S J, Mungall J E, Maier W D. 2015. Platinum group elements in mantle melts and mantle samples. Lithos, 232: 395-417
    Barnes S J, Ripley E M. 2016. Highly siderophile and strongly chalcophile elements in magmatic ore deposits. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia:Mineralogical Society of America, 725-774
    Becker H, Carlson R W, Shirey S B. 2004. Slab-derived osmium and isotopic disequilibrium in garnet pyroxenites from a Paleozoic convergent plate margin (lower Austria). Chemical Geology, 208(1-4): 141-156
    Becker H, Horan M F, Walker R J, Gao S, Lorand J P, Rudnick R L. 2006. Highly siderophile element composition of the Earth's primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths. Geochimica et Cosmochimica Acta, 70(17): 4528-4550
    Becker H, Dale C W. 2016. Re-Pt-Os isotopic and highly siderophile element behavior in oceanic and continental mantle tectonites. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia:Mineralogical Society of America, 369-440
    Becker M, Le Roex A P. 2006. Geochemistry of South African on- and off-craton, group I and group II kimberlites: Petrogenesis and source region evolution. Journal of Petrology, 47(4): 673-703
    Bennett V C, Norman M D, Garcia M O. 2000. Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrites: Sulphides in the plume. Earth and Planetary Science Letters, 183(3-4): 513-526
    Bockrath C, Ballhaus C, Holzheid A. 2004. Fractionation of the platinum-group elements during mantle melting. Science, 305(5692): 1951-1953
    Bodinier J L, Godard M. 2014. Orogenic, Ophiolitic, and Abyssal Peridotites.In: Holland H D, Turekian K K, eds. Treatise on Geochemistry.Boston: Elsevier,103-167
    Bottke W F, Walker R J, Day J M D, Nesvorny D, Elkins-Tanton L. 2010. Stochastic late accretion to Earth, the Moon, and Mars. Science, 330(6010): 1527-1530
    Brandon A D, Creaser R A, Shirey S B, Carlson R W. 1996. Osmium recycling in subduction zones. Science, 272(5263): 861-864
    Brandon A D, Norman M D, Walker R J, Morgan J W. 1999. 186Os-187Os systematics of Hawaiian picrites. Earth and Planetary Science Letters, 174(1-2): 25-42
    Brandon A D, Snow J E, Walker R J, Morgan J W, Mock T D. 2000. 190Pt-186Os and 187Re-187Os systematics of abyssal peridotites. Earth and Planetary Science Letters, 177(3-4): 319-335
    Brandon A D, Walker R J, PuchtelI S. 2006. Platinum-osmium isotope evolution of the Earth's mantle: Constraints from chondrites and Os-rich alloys. Geochimica et Cosmochimica Acta, 70(8): 2093-2103
    Brandon A D, Graham D W, Waight T, Gautason B. 2007. 186Os and 187Os enrichments and high-3He/4He sources in the Earth's mantle: Evidence from Icelandic picrites. Geochimica et Cosmochimica Acta, 71(18): 4570-4591
    Brandon A D, PuchtelI S, Walker R J, Day J M D, Irving A J, Taylor L A. 2012. Evolution of the martian mantle inferred from the 187Re-187Os isotope and highly siderophile element abundances systematics of shergottite meteorites. Geochimica et Cosmochimica Acta, 76: 206-235
    Brenan J M. 2002. Re-Os fractionation in magmatic sulfide melt by monosulfide solid solution. Earth and Planetary Science Letters, 199(3-4): 257-268
    Brenan J M, Finnigan C F, McDonough W F, Homolova V. 2012. Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: The importance of ferric iron. Chemical Geology, 302-303: 16-32
    Brenan J M, Bennett N R, Zajacz Z. 2016. Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia: Mineralogical Society of America, 1-87
    Burton K W, Schiano P, Birck J L, Allègre C J. 1999. Osmium isotope disequilibrium between mantle minerals in a spinel-lherzolite. Earth and Planetary Science Letters, 172(3-4): 311-322
    Burton K W, Schiano P, Birck J L, Allègre C J, Rehk?mper M, Halliday A N, Dawson J B. 2000. The distribution and behaviour of rhenium and osmium amongst mantle minerals and the age of the lithospheric mantle beneath Tanzania. Earth and Planetary Science Letters, 183(1-2): 93-106
    Burton K W, Gannoun A, Birck J L, Allègre C J, Schiano P, Clocchiatti R, Alard O. 2002. The compatibility of rhenium and osmium in natural olivine and their behaviour during mantle melting and basalt genesis. Earth and Planetary Science Letters, 198(1-2): 63-76
    Chatterjee R, Lassiter J C. 2015. High precision Os isotopic measurement using N-TIMS: Quantification of various sources of error in 186Os/188Os measurements. Chemical Geology, 396: 112-123
    Chen J H, Wasserburg G J. 1990. The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets. Geochimica et Cosmochimica Acta, 54(6): 1729-1743
    Chen J H, Papanastassiou D A, Wasserburg G J. 2002. Re-Os and Pd-Ag systematics in Group IIIAB irons and in pallasites. Geochimica et Cosmochimica Acta, 66(21): 3793-3810
    Choi B G, Ouyang X, Wasson J T. 1995. Classification and origin of IAB and IIICD iron meteorites. Geochimica et Cosmochimica Acta, 59(3): 593-612
    Chou C L.1978.Fractionation of siderophile elements in the Earth's upper mantle. In: Proceedings of theLunar and Planetary Science Conference 9th, 219-230
    Chu Z Y, Yan Y, Chen Z, Guo J H, Yang Y H, Li C F, Zhang Y B. 2015. A comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd Concentrations and Os isotopic compositions in geological samples. Geostandards and Geoanalytical Research, 39(2): 151-169
    Coggon J A, Nowell G M, Pearson D G, Parman S W. 2011. Application of the 190Pt-186Os isotope system to dating platinum mineralization and ophiolite formation: An example from the Meratus Mountains, borneo. Economic Geology, 106(1): 93-117
    Coggon J A, Nowell G M, Pearson D G, Oberthür T, Lorand J P, Melcher F, Parman S W. 2012. The 190Pt-186Os decay system applied to dating platinum-group element mineralization of the Bushveld Complex, South Africa. Chemical Geology, 302-303: 48-60
    Creaser R A, Papanastassiou D A, Wasserburg G J. 1991. Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochimica et Cosmochimica Acta, 55(1): 397-401
    Dale C W, Pearson D G, Starkey N A, Stuart F M, Ellam R M, Larsen L M, Fitton J G, Macpherson C G. 2009. Osmium isotopes in Baffin Island and West Greenland picrites: Implications for the 187Os/188Os composition of the convecting mantle and the nature of high 3He/4He mantle. Earth and Planetary Science Letters, 278(3-4): 267-277
    Dale C W, Macpherson C G, Pearson D G, Hammond S J, Arculus R J. 2012b. Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source. Geochimica et Cosmochimica Acta, 89: 202-225
    Day J M D, Pearson D G, Taylor L A. 2007. Highly siderophile element constraints on accretion and differentiation of the earth-moon system. Science, 315(5809): 217-219
    Day J M D, Pearson D G, Macpherson C G, Lowry D, Carracedo J C. 2010. Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochimica et Cosmochimica Acta, 74(22): 6565-6589
    Day J M D. 2013. Hotspot volcanism and highly siderophile elements. Chemical Geology, 341: 50-74
    Day J M D, Pearson D G, Hulbert L J. 2013. Highly siderophile element behaviour during flood basalt genesis and evidence for melts from intrusive chromitite formation in the Mackenzie large igneous province. Lithos, 182-183: 242-258
    Day J M D, Walker R J. 2015. Highly siderophile element depletion in the Moon. Earth and Planetary Science Letters, 423: 114-124
    DayJ M D, Brandon A D, Walker R J.2016a. Highly siderophile elements in earth, mars, the moon, and asteroids. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia:Mineralogical Society of America,161-238
    Day J M D, Waters C L, Schaefer B F, Walker R J, Turner S, 2016b. Use of hydrofluoric acid desilicification in the determination of highly siderophile element abundances and Re-Pt-Os isotope systematics in mafic-ultramafic rocks. Geostandards and Geoanalytical Research, 40(1): 49-65
    Day J M D, Walker R J, Warren J M. 2017. 186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta, 200: 232-254
    Dilek Y, Furnes H. 2014. Ophiolites and their origins. Elements, 10(2): 93-100
    Eisele J, Sharma M, Galer S J G, Blichert-Toft J, Devey C W, Hofmann A W. 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters, 196(3-4): 197-212
    Escrig S, Capmas F, Dupré B, Allègre C J. 2004. Osmium isotopic constraints on the nature of the dupal anomaly from indian mid-ocean-ridge basalts. Nature, 431(7004): 59-63
    Escrig S, Schiano P, Schilling J G, Allègre C. 2005. Rhenium-osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°-50°S). Earth and Planetary Science Letters, 235(3-4): 528-548
    Finnigan C S, Brenan J M, Mungall J E, McDonough W F. 2008. Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction. Journal of Petrology, 49(9): 1647-1665
    Fischer-G?dde M, Becker H, Wombacher F. 2010. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 74(1): 356-379
    Fischer-G?dde M, Becker H, Wombacher F. 2011. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chemical Geology, 280(3-4): 365-383
    Flynn K F, Glendenin L E. 1969. Half-Life of Pd107. Physical Review, 185(4): 1591-1593
    Foley S F. 2011. A reappraisal of redox melting in the earth's mantle as a function of tectonic setting and time. Journal of Petrology, 52(7-8): 1363-1391
    Foley S F, Fischer T P. 2017. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nature Geoscience, 10(12): 897-902
    Fonseca R O C, Mallmann G, O'Neill H S C, CampbellI H, LaurenzV. 2011. Solubility of Os and Ir in sulfide melt: Implications for Re/Os fractionation during mantle melting. Earth and Planetary Science Letters, 311(3-4): 339-350
    Fonseca R O C, Laurenz V, Mallmann G, Luguet A, Hoehne N, Jochum K P. 2012. New constraints on the genesis and long-term stability of Os-rich alloys in the Earth's mantle. Geochimica et Cosmochimica Acta, 87: 227-242
    French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525(7567): 95-99
    Gannoun A, Burton K W, ParkinsonI J, Alard O, Schiano P, Thomas L E. 2007. The scale and origin of the osmium isotope variations in mid-ocean ridge basalts. Earth and Planetary Science Letters, 259(3-4): 541-556
    Gannoun A, Burton K W, Day J M D, Harvey J, Schiano P, ParkinsonI. 2016. Highly siderophile element and os isotope systematics of volcanic rocks at divergent and convergent plate boundaries and in intraplate settings. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia: Mineralogical Society of America, 651-724
    Goldstein J I, Scott E R D, Chabot N L. 2009. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde-Geochemistry, 69(4): 293-325
    Greenberger R N, Mustard J F, Cloutis E A, Pratt L M, Sauer P E, Mann P, Turner K, Dyar M D, Bish D L. 2015. Serpentinization, iron oxidation, and aqueous conditions in an ophiolite: Implications for hydrogen production and habitability on Mars. Earth and Planetary Science Letters, 416: 21-34
    Griffin W L, Spetsius Z V, Pearson N J, O'Reilly S Y. 2002. In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: New constraints on depletion events in the Siberian lithospheric mantle. Geochemistry, Geophysics, Geosystems, 3(11): 1069
    Griffin W L, Graham S, O'Reilly S Y, Pearson N J. 2004. Lithosphere evolution beneath the Kaapvaal Craton: Re-Os systematics of sulfides in mantle-derived peridotites. Chemical Geology, 208(1-4): 89-118
    Grove T L, Kinzler R J, Bryan W B. 1992. Fractionation of mid-ocean ridge basalt (MORB). In: Morgan J P, Blackman D K, Sinton J M, eds. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington D C: Geophysical Monograph Series, 71: 281-310
    Handler M R, Bennett V C. 1999. Behaviour of Platinum-group elements in the subcontinental mantle of eastern Australia during variable metasomatism and melt depletion. Geochimica et Cosmochimica Acta, 63(21): 3597-3618
    Hangh?j K, Kelemen P B, Hassler D, Godard M. 2010. Composition and genesis of depleted mantle peridotites from the wadi tayin massif, oman ophiolite; Major and trace element geochemistry, and os isotope and PGE systematics. Journal of Petrology, 51(1-2): 201-227
    Hannah J L, Bekker A, Stein H J, Markey R J, Holland H D. 2004. Primitive Os and 2316 Ma age for marine shale: Implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth and Planetary Science Letters, 225(1-2): 43-52
    Harvey J, Gannoun A, Burton K W, Rogers N W, Alard O, ParkinsonI J. 2006. Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth and Planetary Science Letters, 244(3-4): 606-621
    Harvey J, Gannoun A, Burton K W, Schiano P, Rogers N W, Alard O. 2010. Unravelling the effects of melt depletion and secondary infiltration on mantle Re-Os isotopes beneath the French Massif Central. Geochimica et Cosmochimica Acta, 74(1): 293-320
    Harvey J, Dale C W, Gannoun A, Burton K W. 2011. Osmium mass balance in peridotite and the effects of mantle-derived sulphides on basalt petrogenesis. Geochimica et Cosmochimica Acta, 75(19): 5574-5596
    Harvey J, Warren J M, Shirey S B. 2016. Mantle sulfides and their role in Re-Os and pb isotope geochronology. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia:Mineralogical Society of America, 579-649
    Hauri E H, Hart S R. 1993. Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth and Planetary Science Letters, 114(2-3): 353-371
    Hirata T, Hattori M, Tanaka T. 1998. In-situ osmium isotope ratio analyses of iridosmines by laser ablation-multiple collector-inductively coupled plasma mass spectrometry. Chemical Geology, 144(3-4): 269-280
    Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 218-229
    Hofmann A W. 2014. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements.In: Holland H D, Turekian K K, eds. Treatise on Geochemistry.2nd ed.Oxford:Elsevier 67-101
    Horan M F, Walker R J, Morgan J W, Grossman J N, Rubin A E. 2003. Highly siderophile elements in chondrites. Chemical Geology, 196(1-4): 27-42
    Ionov D A, Hoefs J, Wedepohl K H, Wiechert U. 1992. Content and isotopic composition of sulphur in ultramafic xenoliths from central Asia. Earth and Planetary Science Letters, 111(2-4): 269-286
    Ireland T J, Arevalo Jr R, Walker R J, McDonough W F. 2009a. Tungsten in Hawaiian picrites: A compositional model for the sources of Hawaiian lavas. Geochimica et Cosmochimica Acta, 73(15): 4517-4530
    Ireland T J, Walker R J, Garcia M O, 2009b. Highly siderophile element and 187Os isotope systematics of Hawaiian picrites: Implications for parental melt composition and source heterogeneity. Chemical Geology, 260(1-2): 112-128
    Ireland T J, Walker R J, Brandon A D. 2011. 186Os-187Os systematics of Hawaiian picrites revisited: New insights into Os isotopic variations in ocean island basalts. Geochimica et Cosmochimica Acta, 75(16): 4456-4475
    Ishikawa A, Senda R, Suzuki K, Dale C W, Meisel T. 2014. Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials. Chemical Geology, 384: 27-46
    Jamais M, Lassiter J C, Brügmann G. 2008. PGE and Os-isotopic variations in lavas from Kohala Volcano, Hawaii: Constraints on PGE behavior and melt/crust interaction. Chemical Geology, 250(1-4): 16-28
    Jugo P J, Luth R W, Richards J P. 2005. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300℃ and 1.0 GPa. Journal of Petrology, 46(4): 783-798
    Kiseeva E S, Wood B J. 2015. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides. Earth and Planetary Science Letters, 424: 280-294
    Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K, Palme H, Jacobsen S B, Yin Q Z, Halliday A N. 2009. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73(17): 5150-5188
    Kruijer T S, Kleine T, Fischer-G?dde M, Burkhardt C, Wieler R. 2014. Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth and Planetary Science Letters, 403: 317-327
    Kruijer T S, Kleine T, Fischer-G?dde M, Sprung P. 2015. Lunar tungsten isotopic evidence for the late veneer. Nature, 520(7548): 534-537
    Langmuir C H, Klein E M, Plank T. 2013. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Morgan J P, Blackman D K, Sinton J M, eds. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington D C: American Geophysical Union, 183-280
    Le Roux V, Bodinier J L, Tommasi A, Alard O, Dautria J M, Vauchez A, Riches A J V. 2007. The Lherz spinel lherzolite: Refertilized rather than pristine mantle. Earth and Planetary Science Letters, 259(3-4): 599-612
    Levasseur S, Birck J L, Allègre C J. 1998. Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater. Science, 282(5387): 272-274
    Li J, Jiang X Y, Xu J F, Zhong L F, Wang X C, Wang G Q, Zhao P P. 2013. Determination of platinum-group elements and Re-Os isotopes using ID-ICP-MS and N-TIMS from a Single digestion after two-stage column separation. Geostandards and Geoanalytical Research, 38(1): 37-50
    Li J, Zhao P P, Liu J, Wang X C, Yang A Y, Wang G Q, Xu J F.2014b. Reassessment of hydrofluoric acid desilicification in the carius tube digestion technique for Re-Os isotopic determination in geological samples. Geostandards and Geoanalytical Research, 39(1): 17-30
    Lightfoot P C, Keays R R. 2005. Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Noril'sk region: Implications for the origin of the Ni-Cu-PGE sulfide ores. Economic Geology, 100(3): 439-462
    Liu C Z, Snow J E, Hellebrand E, Brügmann G, Von Der Handt A, Buchl A, Hofmann A W. 2008. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature, 452(7185): 311-316
    Liu C Z, Snow J E, Brügmann G, Hellebrand E, Hofmann A W. 2009. Non-chondritic HSE budget in Earth's upper mantle evidenced by abyssal peridotites from Gakkel ridge (Arctic Ocean). Earth and Planetary Science Letters, 283(1-4): 122-132
    Liu C Z, Xu Y, Wu F Y. 2018. Limited recycling of crustal osmium in forearc mantle during slab dehydration. Geology, 46(3): 239-242
    Liu J G, Rudnick R L, Walker R J, Gao S, Wu F Y, Piccoli P M. 2010. Processes controlling highly siderophile element fractionations in xenolithic peridotites and their influence on Os isotopes. Earth and Planetary Science Letters, 297(1-2): 287-297
    Liu J G, Rudnick R L, Walker R J, Gao S, Wu F Y, Piccoli P M, Yuan H, Xu W L, Xu Y G. 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochimica et Cosmochimica Acta, 75(13): 3881-3902
    Liu J G, Pearson D G. 2014. Rapid, precise and accurate Os isotope ratio measurements of nanogram to sub-nanogram amounts using multiple Faraday collectors and amplifiers equipped with 1012 Ω resistors by N-TIMS. Chemical Geology, 363: 301-311
    Liu J G, Riches A J V, Pearson D G, Luo Y, Kienlen B, Kjarsgaard B A, Stachel T, Armstrong J P.2016a. Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambrian Research, 272: 168-184
    Liu J G, Touboul M, Ishikawa A, Walker R J, Pearson D G.2016b. Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block, northern Labrador, Canada: Implications for early Earth processes and W recycling. Earth and Planetary Science Letters, 448: 13-23
    Lorand J P, Reisberg L, Bedini R M. 2003. Platinum-group elements and melt percolation processes in Sidamo spinel peridotite xenoliths, Ethiopia, East African Rift. Chemical Geology, 196(1-4): 57-75
    Lorand J P, Grégoire M. 2006. Petrogenesis of base metal sulphide assemblages of some peridotites from the Kaapvaal craton (South Africa). Contributions to Mineralogy and Petrology, 151(5): 521-538
    Lorand J P, Alard O, Luguet A. 2010. Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, France). Earth and Planetary Science Letters, 289(1-2): 298-310
    Lorand J P, Luguet A, Alard O. 2013. Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review. Lithos, 164-167: 2-21
    Lorand J P, Luguet A. 2016. Chalcophile and siderophile elements in mantle rocks: Trace elements controlled by trace minerals. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia: Mineralogical Society of America, 441-488
    Luguet A, Shirey S B, Lorand J P, Horan M F, Carlson R W. 2007. Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochimica et Cosmochimica Acta, 71(12): 3082-3097
    Luguet A, Pearson D G, Nowell G M, Dreher S T, Coggon J A, Spetsius Z V, Parman S W. 2008. Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science, 319(5862): 453-456
    Luguet A, Jaques A L, Pearson D G, Smith C B, Bulanova G P, Roffey S L, Rayner M J, Lorand J P. 2009. An integrated petrological, geochemical and Re-Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos, 112(S2): 1096-1108
    Luguet A, Reisberg L. 2016. Highly siderophile element and 187Os signatures in non-cratonic basalt-hosted peridotite xenoliths: Unravelling the origin and evolution of the post-archean lithospheric mantle. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia: Mineralogical Society of America, 305-367
    Maier W D, Roelofse F, Barnes S J. 2003. The concentration of the platinum-group elements in South African komatiites: Implications for mantle sources, melting regime and PGE fractionation during crystallization. Journal of Petrology, 44(10): 1787-1804
    Maier W D, Barnes S J, CampbellI H, Fiorentini M L, Peltonen P, Barnes S J, Smithies R H. 2009. Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature, 460(7255): 620-623
    Mallmann G, O'Neill H S C. 2007. The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochimica et Cosmochimica Acta, 71(11): 2837-2857
    Mann U, Frost D J, Rubie D C, Becker H, Audétat A. 2012. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures - Implications for the origin of highly siderophile element concentrations in the Earth's mantle. Geochimica et Cosmochimica Acta, 84: 593-613
    Marchesi C, Gonzalez-Jimenez J M, Gervilla F, Garrido C J, Griffin W L, O'Reilly S Y, Proenza J A, Pearson N J. 2011. In situ Re-Os isotopic analysis of platinum-group minerals from the Mayarí-Cristal ophiolitic massif (Mayari-Baracoa Ophiolitic Belt, eastern Cuba): Implications for the origin of Os-isotope heterogeneities in podiform chromitites. Contributions to Mineralogy and Petrology, 161(6): 977-990
    Marchesi C, Dale C W, Garrido C J, Pearson D G, Bosch D, Bodinier J L, Gervilla F, Hidas K. 2014. Fractionation of highly siderophile elements in refertilized mantle: Implications for the Os isotope composition of basalts. Earth and Planetary Science Letters, 400: 33-44
    Martin C E. 1991. Osmium isotopic characteristics of mantle-derived rocks. Geochimica et Cosmochimica Acta, 55(5): 1421-1434
    Mavrogenes J A, O'Neill H S C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180
    Meisel T, Moser J, Fellner N, Wegscheider W, Schoenberg R. 2001a. Simplified method for the determination of Ru, Pd, Re, Os, Ir and Pt in chromitites and other geological materials by isotope dilution ICP-MS and acid digestion. The Analyst, 126(3): 322-328
    Meisel T, Moser J, Wegscheider W. 2001b. Recognizing heterogeneous distribution of platinum group elements (PGE) in geological materials by means of the Re-Os isotope system. Fresenius’ Journal of Analytical Chemistry, 370(5): 566-572
    Meisel T, Fellner N, Moser J. 2003. A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) using ID-ICP-MS with an inexpensive on-line matrix separation in geological and environmental materials. Journal of Analytical Atomic Spectrometry, 18(7): 720-726
    Meisel T, Horan M F. 2016. Analytical methods for the highly siderophile elements. In: Harvey J, Day J M D,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry. Chantilly, Virginia: Mineralogical Society of America, 89-106
    Morgan J W, Walker R J, Brandon A D, Horan M F. 2001. Siderophile elements in Earth's upper mantle and lunar breccias: Data synthesis suggests manifestations of the same late influx. Meteoritics &Planetary Science, 36(9): 1257-1275
    Mudd G M. 2012. Key trends in the resource sustainability of platinum group elements. Ore Geology Reviews, 46: 106-117
    Mundl A, Touboul M, Jackson M G, Day J M D, Kurz M D, Lekic V, Helz R T, Walker R J. 2017. Tungsten-182 heterogeneity in modern ocean island basalts. Science, 356(6333): 66-69
    Mungall J E, Brenan J M. 2014. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochimica et Cosmochimica Acta, 125: 265-289
    Murthy V R. 1991. Early differentiation of the earth and the problem of mantle siderophile elements: A new approach. Science, 253(5017): 303-306
    Nielsen S G, Rehk?mper M, Norman M D, Halliday A N, Harrison D. 2006. Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature, 439(7074): 314-317
    Nowell G M, Pearson D G, Parman S W, Luguet A, Hanski E. 2008. Precise and accurate 186Os/188Os and 187Os/188Os measurements by multi-collector plasma ionisation mass spectrometry, part II: Laser ablation and its application to single-grain Pt-Os and Re-Os geochronology. Chemical Geology, 248(3-4): 394-426
    O'Driscoll B, Walker R J, Day J M D, Ash R D, Daly J S. 2015. Generations of melt extraction, melt-rock interaction and high-temperature metasomatism preserved in peridotites of the ~497 Ma Leka ophiolite complex, norway. Journal of Petrology, 56(9): 1797-1828
    O'Driscoll B, González-Jiménez J M. 2016. Petrogenesis of the platinum-group minerals. In: Harvey J, Day J M D, eds. Highly siderophile and strongh Chalcophile elements in high temperatare geochemistry. Chantilly, Virginia: Mineralogical Society of America, 489-578
    O'Driscoll B, Walker R J, Clay P L, Day J M D, Ash R D, Daly J S. 2018. Length-scales of chemical and isotopic heterogeneity in the mantle section of the Shetland Ophiolite Complex, Scotland. Earth and Planetary Science Letters, 488: 144-154
    O'Neill H S C, Mavrogenes J A. 2002. The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400°C and 1 bar. Journal of Petrology, 43(6): 1049-1087
    O'Reilly S Y, Griffin W L. 2012. Mantle metasomatism. In: Metasomatism and the Chemical Transformation of Rock.Lecture Notes in Earth System Sciences. Berlin:Springer,467-528
    O'Reilly S Y, Griffin W L. 2013. Moho vs crust-mantle boundary: Evolution of an idea. Tectonophysics, 609: 535-546
    Pearson D G, Carlson R W, Shirey S B, Boyd F R, Nixon P H. 1995. Stabilisation of Archaean lithospheric mantle: A Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth and Planetary Science Letters, 134(3-4): 341-357
    Pearson D G, Woodland S J. 2000. Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chemical Geology, 165(1-2): 87-107
    Pearson D G, Irvine G J, Ionov D A, Boyd F R, Dreibus G E. 2004. Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: A study of massif and xenolith peridotite suites. Chemical Geology, 208(1-4): 29-59
    Pearson D G, Parman S W, Nowell G M. 2007. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature, 449(7159): 202-205
    Pearson D G, Wittig N. 2014. The formation and evolution of cratonic mantle lithosphere-evidence from mantle xenoliths.In: Holland H D, Turekian K K, eds. Treatise on Geochemistry.2nd ed. Amsterdam: Elsevier, 255-292
    Pearson N J, Alard O, Griffin W L, Jackson S E, O'Reilly S Y. 2002. In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: Analytical methods and preliminary results. Geochimica et Cosmochimica Acta, 66(6): 1037-1050
    Peucker-Ehrenbrink B, Jahn B M. 2001. Rhenium-osmium isotope systematics and platinum group element concentrations: Loess and the upper continental crust. Geochemistry, Geophysics, Geosystems, 2(10): 1061-1022
    PuchtelI S, Brandon A D, Humayun M. 2004. Precise Pt-Re-Os isotope systematics of the mantle from 2.7-Ga komatiites. Earth and Planetary Science Letters, 224(1-2): 157-174
    PuchtelI S, Humayun M. 2005. Highly siderophile element geochemistry of 187Os-enriched 2.8 Ga Kostomuksha komatiites, Baltic shield. Geochimica et Cosmochimica Acta, 69(6): 1607-1618
    PuchtelI S, Walker R J, James O B, Kring D A. 2008. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: Implications for the late accretion history of the Moon and Earth. Geochimica et Cosmochimica Acta, 72(12): 3022-3042
    PuchtelI S, Walker R J, Anhaeusser C R, Gruau G. 2009. Re-Os isotope systematics and HSE abundances of the 3.5 Ga Schapenburg komatiites, South Africa: Hydrous melting or prolonged survival of primordial heterogeneities in the mantle? Chemical Geology, 262(3-4): 355-369
    PuchtelI S, Walker R J, Touboul M, Nisbet E G, Byerly G R. 2014. Insights into early Earth from the Pt-Re-Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochimica et Cosmochimica Acta, 125: 394-413
    PuchtelI S, Blichert-Toft J, Touboul M, Walker R J. 2018. 182W and HSE constraints from 2.7Ga komatiites on the heterogeneous nature of the Archean mantle. Geochimica et Cosmochimica Acta, 228: 1-26
    Ravizza G, Peucker-Ehrenbrink B. 2003. Chemostratigraphic evidence of deccan volcanism from the marine osmium isotope record. Science, 302(5649): 1392-1395
    Rehk?mper M, Halliday A N. 1997. Development and application of new iondashexchange techniques for the separation of the platinum group and other siderophile elements from geological samples. Talanta, 44(4): 663-672
    Rehk?mper M, Halliday A N, Alt J, Fitton J G, Zipfel J, Takazawa E.1999a. Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: Petrogenetic signature of melt percolation? Earth and Planetary Science Letters, 172(1-2): 65-81
    Rehk?mper M, Halliday A N, Fitton J G, Lee D C, Wieneke M, Arndt N T.1999b. Ir, Ru, Pt, and Pd in basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle. Geochimica et Cosmochimica Acta, 63(22): 3915-3934
    Reisberg L, Zindler A, Marcantonio F, White W, Wyman D, Weaver B. 1993. Os isotope systematics in ocean island basalts. Earth and Planetary Science Letters, 120(3-4): 149-167
    Reisberg L, Lorand J P. 1995. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature, 376(6536): 159-162
    Riches A J V, Day J M D, Walker R J, Simonetti A, Liu Y, Neal C R, Taylor L A. 2012. Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth and Planetary Science Letters, 353-354: 208-218
    Righter K, Campbell A J, Humayun M, Hervig R L. 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta, 68(4): 867-880
    Righter K, Humayun M, Danielson L. 2008. Partitioning of palladium at high pressures and temperatures during core formation. Nature Geoscience, 1(5): 321-323
    Ripley E M, Li C S. 2003. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni(PGE) deposits. Economic Geology, 98(3): 635-641
    Ripley E M, LiC S. 2013. Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Economic Geology, 108(1): 45-58
    Rizo H, Walker R J, Carlson R W, Horan M F, Mukhopadhyay S, Manthos V, Francis D, Jackson M G.2016a. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science, 352(6287): 809-812
    Rizo H, Walker R J, Carlson R W, Touboul M, Horan M F, PuchtelI S, Boyet M, Rosing M T. 2016b. Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochimica et Cosmochimica Acta, 175: 319-336
    Rudnick R L, Walker R J. 2009. Interpreting ages from Re-Os isotopes in peridotites. Lithos, 112(S2): 1083-1095
    Savard D, Barnes S J, Meisel T. 2010. Comparison between nickel-sulfur fire assay te co-precipitation and isotope dilution with high-pressure asher acid digestion for the determination of platinum-group elements, rhenium and gold. Geostandards and Geoanalytical Research, 34(3): 281-291
    Scott E R D. 1972. Chemical fractionation in iron meteorites and its interpretation. Geochimica et Cosmochimica Acta, 36(11): 1205-1236
    Scott E R D, Wasson J T. 1976. Chemical classification of iron meteorites-VIII.Groups IC.IIE, IIIF and 97 other irons. Geochimica et Cosmochimica Acta, 40(1): 103-115
    Sekine Y, Suzuki K, Senda R, Goto K T, Tajika E, Tada R, Goto K, Yamamoto S, Ohkouchi N, Ogawa N O, Maruoka T. 2011. Osmium evidence for synchronicity between a rise in atmospheric oxygen and Palaeoproterozoic deglaciation. Nature Communications, 2: 502
    Selby D, Creaser R A, Stein H J, Markey R J, Hannah J L. 2007. Assessment of the 187Re decay constant by cross calibration of Re-Os molybdenite and U-Pb zircon chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta, 71(8): 1999-2013
    Shirey S B, Walker R J. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67(13): 2136-2141
    Shirey S B, Walker R J. 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences, 26: 423-500
    Smith A D. 2003. Critical evaluation of Re-Os and Pt-Os isotopic evidence on the origin of intraplate volcanism. Journal of Geodynamics, 36(4): 469-484
    Smoliar M I, Walker R J, Morgan J W. 1996. Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science, 271(5252): 1099-1102
    Stein H J, Markey R J, Morgan J W, Hannah J L, Schersten A. 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova, 13(6): 479-486
    Sun W D, Bennett V C, Eggins S M, Kamenetsky V S, Arculus R J. 2003. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas. Nature, 422(6929): 294-297
    Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2007. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature, 450(7173): 1206-1209
    Touboul M, LiuJ G, O'Neil J, PuchtelI S, Walker R J. 2014. New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chemical Geology, 383: 63-75
    Touboul M, PuchtelI S, Walker R J. 2012. 182W evidence for long-term preservation of early mantle differentiation products. Science, 335(6072): 1065-1069
    Tripathy G R, Hannah J L, Stein H J. 2018. Refining the jurassic-cretaceous boundary: Re-Os geochronology and depositional environment of Upper Jurassic shales from the Norwegian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 503: 13-25
    V?lkening J, K?ppe M, Heumann K G. 1991. Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 107(2): 361-368
    Wainwright A N, Luguet A, Fonseca ROC, Pearson D G. 2015. Investigating metasomatic effects on the 187Os isotopic signature: A case study on micrometric base metal sulphides in metasomatised peridotite from the Letlhakane kimberlite (Botswana). Lithos, 232: 35-48
    Walker R J, Carlson R W, Shirey S B, Boyd F R. 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochimica et Cosmochimica Acta, 53(7): 1583-1595
    Walker R J, Morgan J W, Horan M F, Czamanske G K, Krogstad E J, Fedorenko V A, Kunilov V E. 1994. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia. Geochimica et Cosmochimica Acta, 58(19): 4179-4197
    Walker R J, Morgan J W, Horan M F. 1995. Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction? Science, 269(5225): 819-822
    Walker R J, Morgan J W, Beary E S, Smoliar M I, Czamanske G K, Horan M F. 1997. Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry. Geochimica et Cosmochimica Acta, 61(22): 4799-4807
    Walker R J, Horan M F, Morgan J W, Becker H, Grossman J N, Rubin A E. 2002. Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes. Geochimica et Cosmochimica Acta, 66(23): 4187-4201
    Walker R J, Horan M F, Shearer C K, Papike J J. 2004. Low abundances of highly siderophile elements in the lunar mantle: Evidence for prolonged late accretion. Earth and Planetary Science Letters, 224(3-4): 399-413
    Walker R J, McDonough W F, HonestoJ, Chabot N L, McCoy T J, Ash R D, Bellucci J J. 2008. Modeling fractional crystallization of group IVB iron meteorites. Geochimica et Cosmochimica Acta, 72(8): 2198-2216
    Walker R J. 2009. Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation. Chemie der Erde-Geochemistry, 69(2): 101-125
    Walker R J. 2012. Evidence for homogeneous distribution of osmium in the protosolar nebula. Earth and Planetary Science Letters, 351-352: 36-44
    Walker R J, Bermingham K, Liu J G, PuchtelI S, Touboul M, Worsham E A. 2015. In search of late-stage planetary building blocks. Chemical Geology, 411: 125-142
    Walker R J. 2016. Siderophile elements in tracing planetary formation and evolution. Geochemical Perspectives, 5(1): 1-154
    Wang X J, Chen L H, Hofmann A W, Hanyu T, Kawabata H, Zhong Y, Xie L W, Shi J H, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682-8687
    Wang Z C, Becker H, Gawronski T. 2013. Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: A case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps). Geochimica et Cosmochimica Acta, 108: 21-44
    Wang Z C, Becker H. 2014. Abundances of sulfur, selenium, tellurium, rhenium and platinum-group elements in eighteen reference materials by isotope dilution sector-field ICP-MS and negative TIMS. Geostandards and Geoanalytical Research, 38(2): 189-209
    Wasson J T. 1985. Meteorites: Their record of early solar system history. New York:Freeman
    Wasson J T, Kallemeyn G W. 2002. The IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta, 66(13): 2445-2473
    Willbold M, Elliott T, Moorbath S. 2011. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature, 477(7363): 195-198
    Wittig N, Pearson D G, Baker J A, Duggen S, Hoernle K. 2010. A major element, PGE and Re-Os isotope study of Middle Atlas (Morocco) peridotite xenoliths: Evidence for coupled introduction of metasomatic sulphides and clinopyroxene. Lithos, 115(1-4): 15-26
    Yokoyama T, Walker R J. 2016. Nucleosynthetic isotope variation of siderophile and chalcophile elements in the solar system. In: HarveyJ, DayJMD,eds. Highly Siderophile and Strongly Chalcophile Elements in HighTemperature Geochemistry and Cosmochemistry.Chantilly, Virginia: Mineralogical Society of America, 107-160
    Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences,14: 493-571
    储著银, 陈福坤, 王伟, 谢烈文, 杨岳衡. 2007. 微量地质样品铼锇含量及其同位素组成的高精度测定方法. 岩矿测试, 26(6): 431-435
    李超, 屈文俊, 杜安道, 周利敏. 2012. 含有普通锇的辉钼矿Re-Os同位素定年研究. 岩石学报, 28(2): 702-708
    李杰, 许继峰, 梁细荣. 2005. Re-Os同位素分析测试技术进展. 质谱学报, 26(3): 175-181
    李杰, 张晶, 尹露. 2018. 地质样品的Re-Os同位素分析技术及存在的问题. 矿物岩石地球化学通报, 37(2): 242-249
    漆亮, 周美夫, 严再飞, 皮道会, 胡静. 2006. 改进的卡洛斯管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量. 地球化学, 35( 6): 667-674
    漆亮, 黄小文. 2013. 地质样品铂族元素及Re-Os同位素分析进展. 矿物岩石地球化学通报, 32(2): 171-189
    汪在聪, 邹宗琪. 2019. 亲铁(亲铜)元素含量比值在地球科学中的初步应用实例. 矿物岩石地球化学通报, 38(2): 224-236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700