陆地热泉硅华研究进展与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances and Prospects of the Terrestrial Geothermal Siliceous Sinter Research
  • 作者:游雅贤 ; 文华国 ; 郑荣才 ; 罗连超
  • 英文作者:You Yaxian;Wen Huaguo;Zheng Rongcai;Luo Lianchao;State Key Laboratory of Oil and Gas Reservior Geology and Exploitation,Chengdu University of Technology;Institute of Sedimentary Geology,Chengdu University of Technology;
  • 关键词:热泉硅华 ; 形成环境 ; 岩石矿物学 ; 地球化学 ; 微生物 ; 成岩作用
  • 英文关键词:hot spring siliceous sinter;;formation environment;;perology and mineralogy;;geochemistry;;microorganism;;diagenesis
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:成都理工大学油气藏地质及开发工程国家重点实验室;成都理工大学沉积地质研究院;
  • 出版日期:2019-01-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.184
  • 基金:国家自然科学基金项目(41572097;41002033;41472088)
  • 语种:中文;
  • 页:DZKQ201901008
  • 页数:14
  • CN:01
  • ISSN:42-1240/P
  • 分类号:74-87
摘要
陆地热泉硅华是活动地热环境下,富含硅酸盐热液流体在地表形成的沉积物,其独特的微生物结构及地球化学特征对潜在地热资源、古环境、古气候、早期生命起源等研究具有重要指示意义。尽管近年来地质学家对形成陆地热泉硅华的热源类型、硅华结构特征、共生矿物、同位素及微量元素特征、微生物在成岩中的作用等方面做了不少研究,但由于热泉硅华沉积-成岩过程中受包括热储岩性、热泉水蒸发冷却、pH值改变、微生物生长等复杂外界条件影响,其形成环境、发育特征和控制因素等系列科学问题有待深入探讨。在国内外大量文献调研的基础上,结合近期对云南腾冲热海地热区硅华的研究,综述了目前国内外对陆地热泉硅华的研究进展,总结了陆地热泉硅华具有矿物种类多样、结构形态丰富、地球化学特征复杂、与地热系统热源关系密切等基本特征,还总结了影响陆地热泉硅华形成中冷却、蒸发、pH值、阳离子效应、微生物活动等非生物和生物控制因素,提出了当前陆地热泉硅华研究存在硅华结构成因解释不明确、微生物与热泉硅华微结构间的关系及微量元素和同位素地球化学研究薄弱、人类活动对硅华沉积影响使得研究更复杂等问题,指出下一步应加强同位素分馏、微量元素及常量元素在硅华沉积-成岩中的作用机理研究;通过全面的地球物理-化学-微生物关系分析,明确热泉硅华成因;弄清控制硅华沉积的因素及微生物在硅华生长中的作用;深入了解热泉硅华形成的复杂性及其在全球范围内的相关性,从而更加全面地认识陆地热泉硅华沉积,并为下一步研究提供启示。
        Terrestrial hot-spring siliceous sinter is a common surface product formed in the emerging and precipitation of silicate hydrothermal fluids in geothermal environments.Its unique microbial textures and geochemical characteristics have important implications in the study of latent geothermal resources,paleoenvironment,paleoclimate,and early life origin.Due to its manifestation of the geothermal system heat source on the terrestrial surface,its depositional and diagenetic process is affected by biotic and abiotic interactions in different depositional environments,and exhibits different petromineralogy and geochemical characteristics on the earth′s surface.In recent years geologists have studied the types of heat sources,the textures characteristics,symbiotic minerals,isotopes and trace elements,and the role of microorganismsin the formation of terrestrial hot springs siliceous sinter.However,due to the influence of complex external conditions such as thermal reservoir lithology,evaporative cooling of hot spring water,pH changes and microbial growth during the depositional and diagenetic process of hot springs siliceous sinter,further studies are needed on the formation environment,geological characteristics of sinter and factors controlling the formation mechanism of sinter.Based on a literature review and our research in the Tengchong geothermal field,Yunnan,we reviewed the current research progress in terrestrial hot spring siliceous deposits in China and abroad.We not only summarize the basic characteristics of terrestrial hot springs siliceous sinter,such as mineral diversity,abundant structure and morphology,complex geochemical characteristics,and close relationship with the heat source of geothermal system,but also sum up the abiotic and biological control factors affecting the formation of terrestrial hot springs siliceous sinter,such as cooling,evaporation,pH values,cation effect and microbial activity.We propose that some problems still remain in the current study of sinter deposits in terrestrial hot springs,for example,the unclarified interpretation of the cause of sinter textures,the weak relationship between microorganisms and micro-structures of the hot springs sinter and trace elements and isotope geochemistry and the complexity of the influence of human activities on the deposition of sinter.We suggest that the next step of research should be to investigate the action mechanism of isotope fractionation,trace elements and major elements in the depositional and diagenetic process of sinter and that we should make comprehensive geophysical-chemical-microbial relationship analysis to clarify the cause of the formation of hot spring siliceous sinter and the factors controlling the deposition of sinter and the role of microorganisms in the growth of sinter so as to understand in depth the complexity of hot springs sinter formation and its global relevance.This study may provide a more comprehensive understanding of terrestrial hot spring siliceous deposits and be an inspiration for further research.
引文
[1] Jones B,Renaut R W.Formation of silica oncoids around geysers and hot springs at El Tatio,northern Chile[J].Sedimentology,1997,44(2):287-304.
    [2] Wang H L,Zheng M P,Huang X X.Cesium accumulation by bacteriumThermus sp.Tibetan G7:Hints for biomineralization of cesium-bearing geyserite in hot springs in Tibet,China[J].Chinese Science Bulletin,2007,52(19):2680-2686.
    [3] Lynne B Y.Mapping vent to distal-apron hot spring paleo-flow pathways using siliceous sinter architecture[J].Geothermics,2012,43:3-24.
    [4] Campbell K A,Lynne B Y,Handley K M,et al.Tracing biosignature preservation of geothermally silicified microbial textures into the geological record[J].Astrobiology,2015,15(10):858.
    [5] Sanchez-Yanez C,Reich M,Leisen M,et al.Geochemistry of metals and metalloids in siliceous sinter deposits:Implications for elemental partitioning into silica phases[J].Applied Geochemistry,2017,80:112-133.
    [6] Jones B,Renaut R W.Growth of siliceous spicules in acidic hot saprings,Waiotapu Geothermal Area,North Island,New Zealand[J].Palaios,2006,21(5):406-423.
    [7] Renaut R W.Facies architecture in depositional systems resulting from the interaction of acidic springs,alkaline springs,and acidic lakes:Case study of Lake Roto-a-Tamaheke,Rotorua,New Zealand[J].Revue Canadienne Des Sciences De La Terre,2012,49:1217-1250.
    [8] Drake B D,Campbell K A,Rowland J V,et al.Evolution of a dynamic paleo-hydrothermal system at Mangatete,Taupo Volcanic Zone,New Zealand[J].Journal of Volcanology&Geothermal Research,2014,282:19-35.
    [9] Pope J G,Brown K L,Mcconchie D M.Gold concentrations in springs at Waiotapu,New Zealand:Implications for precious metal deposition in geothermal systems[J].Economic Geology,2005,100:677-687.
    [10]Vikre P G.Sinter-vein correlations at Buckskin Mountain,National District,Humboldt County,Nevada[J].Economic Geology,2007,102(2):193-224.
    [11]Campbell K A,Guido D M,Gautret P,et al.Geyserite in hotspring siliceous sinter:Window on earth’s hottest terrestrial(paleo)environment and its extreme life[J].Earth-Science Reviews,2015,148:44-64.
    [12]Ruff S W,Farmer J D.Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile[J].Nature Communications,2016,7:13554.
    [13]Jones B,Peng X.Laminae development in opal-A precipitates associated with seasonal growth of the form-genus Calothrix,(Cyanobacteria),Rehai geothermal area,Tengchong,Yunnan Province,China[J].Sedimentary Geology,2015,319:52-68.
    [14]Jones B,Peng X.Growth and development of spring towers at Shiqiang,Yunnan Province,China[J].Sedimentary Geology,2017,347:183-207.
    [15]Berelson W M,Corsetti F A,Peperanney C,et al.Hot spring siliceous stromatolites from Yellowstone National Park:Assessing growth rate and laminae formation.[J].Geobiology,2011,9(5):411-424.
    [16]Harrison J P,Aggarwal S D,Cockell C S.Salinity influences the response of to artificial fossilization by evaporative silicification[J].Geomicrobiology Journal,2015,33(5):377-386.
    [17]Watts-Henwood N,Campbell K A,Lynne B Y,et al.Snapshot of hot-spring sinter at Geyser Valley,Wairakei,New Zealand,following anthropogenic drawdown of the geothermal reservoir[J].Geothermics,2017,68:94-114.
    [18]Herdianita N R,Browne P R L,Rodgers K A,et al.Mineralogical and textural changes accompanying ageing of silica sinter[J].Mineralium Deposita,2000,35(1):48-62.
    [19] Migdisov A A,Williams-Jones A E.Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids[J].Mineralium Deposita,2014,49(8):987-997.
    [20]Najman Y,Appel E,Boudagher-Fadel M,et al.Timing of IndiaAsia collision:Geological,biostratigraphic,and palaeomagnetic constraints[J].Journal of Geophysical Research,2010,115(B12):1-70.
    [21]张天乐,王宗良.腾冲现代热泉系统硅华的矿物学特征及其地质意义[J].岩石矿物学杂志,1997(2):170-178.
    [22]Sun Y,Wu Z,Ye P,et al.Dynamics of the Tengchong volcanic region in the southeastern Tibetan Plateau:A numerical study[J].Tectonophysics,2016,683:272-285.
    [23]Wang H,Tian Y,Liang M.Late Cenozoic exhumation history of the Luojishan in the southeastern Tibetan Plateau:Insights from apatite fission-track thermochronology[J].Journal of the Geological Society,2017,174(5):883-891.
    [24]王海雷.西藏地热区微生物对铯的吸附及其对铯硅华成矿的贡献[D].北京:中国地质科学院,2006.
    [25]龚士良.台湾地热资源及其温泉开发[J].地下水,2003,25(4):235-236.
    [26]White D E,Brannock W W,Murata K J.Silica in hot-spring waters[J].Geochimica et Cosmochimica Acta,1956,10:27-59.
    [27]Hedenquist J W,Browne P R L.The evolution of the Waiotapu geothermal system,New Zealand,based on the chemical and isotopic composition of its fluids,minerals and rocks[J].Geochimica et Cosmochimica Acta,1989,53:2235-2257.
    [28]Schinteie R,Campbell K A,Browne P R L.Microfacies of stromatolitic sinter from acid-sulphate-chloride springs at Parariki Stream,Rotokawa Geothermal Field,New Zealand[J].Palaeontologia Electronica,2007,10(1):119-125.
    [29]Lowe D R,Braunstein D.Microstructure of high-temperature(>73℃)siliceous sinter deposited around hot springs and geysers,Yellowstone National Park:The role of biological and abiological processes in sedimentation[J].Canadian Journal of Earth Sciences,2003,40(11):1611-1642.
    [30]Handley K M,Campbell K A,Mountain B W,et al.Abiotic-biotic controls on the origin and development of spicular sinter:In situ growth experiments,Champagne Pool,Waiotapu,New Zealand[J].Geobiology,2005,3(2):93-114.
    [31]李学伦,孙效功,王永红.山东半岛温泉的分布规律与成因[J].中国海洋大学学报:自然科学版,1997,27(3):389-396.
    [32]刘明亮.不同热源类型地热系统的地球化学对比[D].武汉:中国地质大学(武汉),2015.
    [33]杨金豹,赵志丹.地幔过渡带和下地幔组成与深部热源研究进展[J].矿物岩石地球化学通报,2012,31(3):275-286.
    [34]Jiang C S,Shao Z G,Yan R,et al.Research progress on the problem of fluid,heat and energy distribution near the earthquake source area[J].China Earthquake Research(English Edition),2011,25(4):378-394.
    [35]Mcmillan N,Larson P,Fairley J,et al.Direct measurement of advective heat flux from several Yellowstone hot springs,Wyoming,USA[J].Geosphere,2018,14(4):1860-1874.
    [36]Hurwitz S,Clor L E,Mccleskey R B,et al.Dissolved gases in hydrothermal(phreatic)and geyser eruptions at Yellowstone National Park,USA[J].Geology,2016,44(3):235-238.
    [37]ladóttir B A,Sigmarsson O,Larsen G.Tephra productivity and eruption flux of the subglacial Katla volcano,Iceland[J].Bulletin of Volcanology,2018,80(7):58.
    [38]Gudmundsson A.The mechanics of large volcanic eruptions[J].Earth-Science Reviews,2016,163:72-93.
    [39]Barker S J,Wilson C J N,Morgan D J,et al.Rapid priming,accumulation,and recharge of magma driving recent eruptions at a hyperactive caldera volcano[J].Geology,2016,44(4):323-326.
    [40]Zhang M,Guo Z,Sano Y,et al.Magma-derived CO2,emissions in the Tengchong volcanic field,SE Tibet:Implications for deep carbon cycle at intra-continent subduction zone[J].Journal of Asian Earth Sciences,2016,127:76-90.
    [41]Gao J F,Zhou M F,Robinson P T,et al.Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field,SE Tibetan Plateau[J].Journal of Asian Earth Sciences,2015,98:1-17.
    [42]Xu Y,Yang X,Li Z,et al.Seismic structure of the Tengchong volcanic area southwest China from local earthquake tomography[J].Journal of Volcanology&Geothermal Research,2012,239/240:83-91.
    [43]Yang H,Hu J,Hu Y,et al.Crustal structure in the Tengchong volcanic area and position of the magma chambers[J].Journal of Asian Earth Sciences,2013,73:48-56.
    [44]Guo Z,Wilson M,Zhang M,et al.Post-collisional ultrapotassic mafic magmatism in South Tibet:Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted indian continental lithosphere slab[C]∥Anon.Institute of Geology and Geophysics.Beijing:Chinese Academy of Sciences,2015:798-804.
    [45]Du J,Liu C,Fu B,et al.Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field,southwestern China[J].Journal of Volcanology&Geothermal Research,2005,142:243-261.
    [46]赵慈平,冉华,王云.腾冲火山区的现代幔源氦释放:构造和岩浆活动意义[J].岩石学报,2012,28(4):1189-1204.
    [47]胥颐,汪晟,张丽莉,等.腾冲火山区深部构造研究及其与岩浆活动的关系[J].地球物理学进展,2015,30(3):1034-1038.
    [48]肖昌浩,王庆飞,周兴志,等.腾冲地热区高温热泉水中稀土元素特征[J].岩石学报,2010,26(6):1938-1944.
    [49]阚荣举,赵晋明,阚丹.腾冲火山地热区的构造演化与火山喷发[J].地震地磁观测与研究,1996,17(4):28-33.
    [50]姜朝松,周真恒,周瑞琦.腾冲火山区域构造演化过程[J].地震研究,2000,23(2):188-193.
    [51]姜朝松,周瑞琦,赵慈平.腾冲地区构造地貌特征与火山活动的关系[J].地震研究,2003,26(4):361-366.
    [52]Zhou M F,Wang C Y,Zhao J H,et al.Heterogeneous mantle source and magma differentiation of quaternary arc-like volcanic rocks from Tengchong,SE margin of the Tibetan Plateau[J].Contributions to Mineralogy&Petrology,2012,163(5):841-860.
    [53]Tobler D J,Stefánsson A,Benning L G.In-situ grown silica sinters in Icelandic geothermal areas[J].Geobiology,2008,6(5):481-502.
    [54]Nicolau C,Reich M,Lynne B.Physico-chemical and environmental controls on siliceous sinter formation at the high-altitude El Tatio geothermal field,Chile[J].Journal of Volcanology&Geothermal Research,2014,282(8):60-76.
    [55]Campbell K A,Sannazzaro K,Rodgers K A,et al.Sedimentary facies and mineralogy of the Late Pleistocene Umukuri Silica Sinter,Taupo Volcanic Zone,New Zealand[J].Journal of Sedimentary Research,2001,71(5):727-746.
    [56]Rodgers K,Browne P,Buddle T,et al.Silica phases in sinters and residues from geothermal fields of New Zealand[J].EarthScience Reviews,2004,66(1):1-61.
    [57]Lynne B Y,Campbell K A,Moore J N,et al.Diagenesis of1900-year-old siliceous sinter(opal-A to quartz)at Opal Mound,Roosevelt Hot Springs,Utah,U.S.A.[J].Sedimentary Geology,2005,179:249-278.
    [58]Lynne B Y,Campbell K A,Moore J,et al.Origin and evolution of the Steamboat Springs siliceous sinter deposit,Nevada,U.S.A[J].Sedimentary Geology,2008,210:111-131.
    [59]Smith B Y,Turner S J,Rodgers K A.Opal-A and associated microbes from Wairakei,New Zealand:The first 300days[J].Mineralogical Magazine,2003,67(3):563-579.
    [60]Peng X,Jones B.Rapid precipitation of silica(opal-A)disguises evidence of biogenicity in high-temperature geothermal deposits:Case study from Dagunguo hot spring,China[J].Sedimentary Geology,2012,257/260:45-62.
    [61]Lynne B Y.Impact of three common post-depositional environmental settings on siliceous sinter diagenesis:An eight year experiment[J].Journal of Volcanology&Geothermal Research,2015,292:84-101.
    [62]Jones B,Renaut R W.Water content of opal-A:Implications for the origin of laminae in geyserite and sinter[J].Journal of Sedimentary Research,2004,74(1):117-128.
    [63]Liesegang M,Milke R.Australian sedimentary opal-A and its associated minerals:Implications for natural silica sphere formation[J].American Mineralogist,2014,99(7):1488-1499.
    [64]Lynne B Y,Campbell K A.Diagenetic transformations(opal-A to quartz)of low-and mid-temperature microbial textures in siliceous hot-spring deposits,Taupo Volcanic Zone,New Zealand[J].Canadian Journal of Earth Sciences,2003,40(11):1679-1696.
    [65]Moschen R,Lücke A,Parplies J,et al.Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake(Lake Holzmaar,Germany)[J].Geochimica et Cosmochimica Acta,2006,70:4367-4379.
    [66]Meister P,Chapligin B,Picard A,et al.Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific:A modern analogue for banded iron/chert formations?[J].Geochimica et Cosmochimica Acta,2014,137:188-207.
    [67]Elmas N,Bentli I.Environmental and depositional characteristics of diatomite deposit,Alayunt Neogene Basin(Kutahya),West Anatolia,Turkey[J].Environmental Earth Sciences,2013,68(2):395-412.
    [68]He J G,Zhou Y Z,Li H Z.Biogenic characteristics of Mesozoic cherts in southern Tibet and its significance[J].Journal of Central South University,2014,21(4):1477-1490.
    [69]Zhou Y Z,Wei F U,Yang Z J,et al.Geochemical characteristics of Mesozoic chert from southern Tibet and its petrogenic implications[J].Acta Petrologica Sinica,2008,24(3):600-608.
    [70]Floke O W.Moganite,a new microcrystalline silica mineral[J].Neues Jahrbuch für Mineralogie-Abhandlungen,1984,149(3):325-336.
    [71]Farmer J D,Marais D J D.Exploring for a record of ancient Martian life[J].Journal of Geophysical Research Planets,1999,104(11):26977-26995.
    [72]Hamilton A,Campbell K,Rowland J,et al.The Kohuamuri siliceous sinter as a vector for epithermal mineralisation,Coromandel Volcanic Zone,New Zealand[J].Mineralium Deposita,2017,52(2):1-16.
    [73]Uysal I T,Gasparon M,Bolhar R,et al.Trace element composition of near-surface silica deposits:A powerful tool for detecting hydrothermal mineral and energy resources[J].Chemical Geology,2011,280(1):154-169.
    [74]Kong F,Wang H,Zheng M.Isolation and characterization of thermophiles from hot springs at Dagejia cesium-bearing geyserite in Tibet[J].Acta Geologica Sinica,2007,81:1750-1753.
    [75] Wang H,Zheng M,Kong F.Microbial mats in Tibetan hot springs and their contributions to the cesium-bearing geyserite ore formation[J].Acta Geologica Sinica,2012,86:166-173.
    [76]Campbell K A,Rodgers K A,Brotheridge J M A,et al.An unusual modern silica-carbonate sinter from Pavlova spring,Ngatamariki,New Zealand[J].Sedimentology,2010,49(4):835-854.
    [77]Jones B,Renaut R W,Rosen M R.High-temperature(>90℃)calcite precipitation at Waikite Hot Springs,North Island,New Zealand[J].Journal of the Geological Society,1996,153(3):481-496.
    [78]Jones B,Renaut R W.Hot spring and geyser sinters:The integrated product of precipitation[J].Canadian Journal of Earth Sciences,2003,40(11):1549-1569.
    [79]Smith D J,Jenkin G R T,Petterson M G,et al.Unusual mixed silica-carbonate deposits from magmatic-hydrothermal hot springs,Savo,Solomon Islands[J].Journal of the Geological Society,2011,168(6):1297-1310.
    [80]Jones B,Renaut R W,Rosen M R.Stromatolites forming in acidic hot-spring waters,North Island,New Zealand[J].Palaios,2000,15(5):450-475.
    [81]Kyle J E,Schroeder P A.Role of smectite in siliceous-sinter formation and microbial-texture preservation:Octopus Spring,Yellowstone National Park,Wyoming,USA[J].Clays&Clay Minerals,2007,55(55):189-199.
    [82]Zheng M.A new type of hydrothermal deposit:Cesium-bearing geyserite in Tibet[M].Beijing:Geological Press,1995.
    [83]Zhao Y,Zhao X T,Ma Zhibang,et al.Study on chronology for hot spring typed Cs-deposit of Targjia,Tibet[J].Acta Petrologica Sinica,2006,22:717-724.
    [84]Zhou B,Ren E F,Sherriff B L,et al.Multinuclear NMR study of Cs-bearing geyserites of the Targejia hot spring cesium deposit in Tibet[J].American Mineralogist,2013,98(5/6):907-913.
    [85]Zhao Y,Han J,Guo L,et al.Characteristics and geological significance of mineralogy and fabrics for the hot spring cesium deposit occurring within the Targejia district,Tibet[J].Acta Petrologica Sinica,2008,24:519-530.
    [86]Shen L C,Wu K Y,Xiao Q,et al.Carbon dioxide degassing flux from two geothermal fields in Tibet,China[J].Science Bulletin,2011,56(35):3783-3793.
    [87]Jones B,Renaut R W.Petrography and genesis of spicular and columnar geyserite from the Wh[J].Canadian Journal of Earth Sciences,2003,40(11):1585-1610.
    [88]Jones B,Renaut R W,Rosen M R.Microbial construction of siliceous stalactites at geysers and hot springs:Examples from the Whakarewarewa geothermal area,North Island,New Zealand[J].Palaios,2001,16(1):73-94.
    [89]Lowe D R,Kai S A,Braunstein D.The zonation and structuring of siliceous sinter around hot springs,Yellowstone National Park,and the role of thermophilic bacteria in its deposition[C]∥Thermophiles biodiversity,ecology,and evolution.[S.l.]:Springer US,2001:143-166.
    [90]Guidry S A,Chafetz H S.Anatomy of siliceous hot springs:Examples from Yellowstone National Park,Wyoming,USA[J].Sedimentary Geology,2003,157(1):71-106.
    [91]Guidry S A,Chafetz H S.Siliceous shrubs in hot springs from Yellowstone National Park,Wyomin[J].Canadian Journal of Earth Sciences,2003,40(11):1571-1583.
    [92]Walter M R.Chapter 8.8hot-spring sediments in Yellowstone National Park[J].Developments in Sedimentology,1976,20:489-498.
    [93]Jones B,Renaut R W,Rosen M R,et al.Coniform stromatolites from geothermal systems,North Island,New Zealand[J].Palaios,2002,17(1):84-103.
    [94]Campbell K A,Buddle T F,Browne P R L.Late Pleistocene siliceous sinter associated with fluvial,lacustrine,volcaniclastic and landslide deposits at Tahunaatara,Taupo Volcanic Zone,New Zealand[J].Transactions of the Royal Society of Edinburgh Earth Sciences,2003,94(4):485-501.
    [95]Mountain B W,Benning L G,Boerema J A.Experimental studies on New Zealand hot spring sinters:Rates of growth[J].Canadian Journal of Earth Sciences,2003,40(11):1643-1667.
    [96]Tan H B,Su J B,Xu P,et al.Enrichment mechanism of Li,B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan plateau:Constraints from geochemical experimental data[J].Applied Geochemistry,2018,93:60-68.
    [97]Steinmüller K.Modern hot springs in the southern volcanic Cordillera of Peru and their relationship to Neogene epithermal precious-metal deposits[J].Journal of South American Earth Sciences,2001,14(4):377-385.
    [98]Iler R K.Effect of adsorbed alumina on the solubility of amorphous silica in water[J].Journal of Colloid&Interface Science,1973,43(2):399-408.
    [99]Ichikuni M.Incorporation of aluminum and iron into siliceous sinters[J].Chemical Geology,1970,6:273-279.
    [100]Carroll S,Mroczek E,Alai M,et al.Amorphous silica precipitation(60to 120°C):Comparison of laboratory and field rates[J].Geochimica et Cosmochimica Acta,1998,62:1379-1396.
    [101]Gallup D L.Aluminum silicate scale formation and inhibition:Scale characterization and laboratory experiments[J].Geothermics,1997,26(4):483-499.
    [102]Gallup D L.Aluminum silicate scale formation and inhibition(2):Scale solubilities and laboratory and field inhibition tests[J].Geothermics,1998,27(4):485-501.
    [103]Yokoyama T,Taguchi S,Motomura Y,et al.The effect of aluminum on the biodeposition of silica in hot spring water:Chemical state of aluminum in siliceous deposits collected along the hot spring water stream of Steep Cone hot spring in Yellowstone National Park,USA[J].Chemical Geology,2004,212:329-337.
    [104]Mckenzie E J,Brown K L,Cady S L,et al.Trace metal chemistry and silicification of microorganisms in geothermal sinter,Taupo Volcanic Zone,New Zealand[J].Geothermics,2001,30(4):483-502.
    [105]赵元艺,聂凤军,侯增谦,等.西藏搭格架热泉型铯矿床地球化学[J].矿床地质,2007,26(2):163-174.
    [106]赵元艺,樊兴涛,韩景仪,等.西藏谷露热泉型铯矿床地质地球化学特征与成矿作用[J].地质通报,2009,28(7):933-954.
    [107]冯彩霞,刘家军.硅质岩的研究现状及其成矿意义[J].世界地质,2001,20(2):119-123.
    [108]吕志成,刘丛强,刘家军,等.北大巴山下寒武统毒重石矿床赋矿硅质岩地球化学研究[J].地质学报,2004,78(3):390-406.
    [109]Migdisov A A,Williams-Jones A E,Wagner T.An experimental study of the solubility and speciation of the rare earth elements(III)in fluoride-and chloride-bearing aqueous solutions at temperatures up to 300℃[J].Geochimica et Cosmochimica Acta,2009,73:7087-7109.
    [110]Feng J L,Gao S P,Zhang J F.Lanthanide tetrad effect in ferromanganese concretions and terra rossa overlying dolomite during weathering[J].Chemie der Erde-Geochemistry-Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology,2011,71(4):349-362.
    [111]Williams-Jones A E,Migdisov A A,Samson I M.Hydrothermal mobilisation of the rare earth elements:A tale of"Ceria"and"Yttria"[J].Elements,2012(8):355-360.
    [112]Feng J L,Zhao Z H,Chen F,et al.Rare earth elements in sinters from the geothermal waters(hot springs)on the Tibetan Plateau,China[J].Journal of Volcanology&Geothermal Research,2014,287:1-11.
    [113]Geilert S,Vroon P Z,Keller N S,et al.Silicon isotope fractionation during silica precipitation from hot-spring waters:Evidence from the Geysir geothermal field,Iceland[J].Geochimica et Cosmochimica Acta,2015,164:403-427.
    [114]Geilert S,Vroon P Z,Bergen M J V.Effect of diagenetic phase transformation on the silicon isotope composition of opaline sinter deposits of Geysir,Iceland[J].Chemical Geology,2016,433:57-67.
    [115]Zhang G,Liu C Q,Liu H,et al.Geochemistry of the Rehai and Ruidian geothermal waters,Yunnan Province,China[J].Geothermics,2008,37(1):73-83.
    [116]Siebert C,M9ller P,Geyer S,et al.Thermal waters in the lower Yarmouk Gorge and their relation to surrounding aquifers[J].Chemie der Erde-Geochemistry-Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology,2014,74(3):425-441.
    [117]Wood S A.Rare earth element systematics of acidic geothermal waters from the Taupo Volcanic Zone,New Zealand[J].Journal of Geochemical Exploration,2006,89(1):424-427.
    [118]Ambrosio M,Doveri M,Fagioli M T,et al.Water-rock interaction in the magmatic-hydrothermal system of Nisyros Island(Greece)[J].Journal of Volcanology&Geothermal Research,2010,192:57-68.
    [119]Reyes A G,Trompetter W J.Hydrothermal water-rock interaction and the redistribution of Li,B and Cl in the Taupo Volcanic Zone,New Zealand[J].Chemical Geology,2012,314/317:96-112.
    [120]Fournier R O,Kennedy B M,Aoki M,et al.Correlation of gold in siliceous sinters with,in hot spring waters of Yellowstone National Park[J].Geochimica et Cosmochimica Acta,1994,58:5401-5419.
    [121]Weed W H.On the formation of siliceous sinter by the vegetation of thermal springs[J].American Journal of Science,1889,37:351-359.
    [122]Bartley J K.Actualistic taphonomy of cyanobacteria:Implications for the Precambrian fossil record[J].Palaios,1996,11(6):571-586.
    [123]Orange F,Lalonde S V,Konhauser K O.Experimental simulation of evaporation-driven silica sinter formation and microbial silicification in hot spring systems.[J].Astrobiology,2013,13(2):163-176.
    [124]Guidry S A,Chafetz H S.Factors governing subaqueous siliceous sinter precipitation in hot springs:Examples from Yellowstone National Park,USA[J].Sedimentology,2002,49(6):1253-1267.
    [125]Guidry S A,Chafetz H S.Depositional facies and diagenetic alteration in a relict siliceous hot-spring accumulation:Examples from Yellowstone National Park,U.S.A.[J].Journal of Sedimentary Research,2003,73(5):806-823.
    [126]Handley K M,Campbell K A.Character,analysis,and preservation of biogenicity in terrestrial siliceous stromatolites from geothermal settings[C]∥Tewari V C,Seckbach J.Stromatolites:Interaction of microbes with sediments,cellular origin.Life in Extreme Habitats and Astrobiology.Heidelberg:Springer,2011:359-381.
    [127]Barbieri R,Cavalazzi B,Stivaletta N,et al.Silicified biota in high-altitude,geothermally influenced ignimbrites at El Tatio Geyser Field,Andean Cordillera(Chile)[J].Geomicrobiology Journal,2014,31(6):493-508.
    [128]Purcell D,Sompong U,Yim L C,et al.The effects of temperature,pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand[J].Fems Microbiology Ecology,2007,60(3):456-466.
    [129]Childs A,Mountain B,O'Toole R,et al.Relating microbial community and physicochemical parameters of a hot spring:Champagne Pool,Wai-o-tapu,New Zealand[J].Geomicrobiology Journal,2008,25(8):441-453.
    [130]Benning L G,Tobler D J.The metagenomics of biosilicification:Causes and effects[J].Mineralogical Magazine,2008,72(1):221-225.
    [131]Petursdottir S K,Bjornsdottir S H,Hreggvidsson G O,et al.Analysis of the unique geothermal microbial ecosystem of the Blue Lagoon[J].Fems Microbiology Ecology,2009,70(3):425-432.
    [132]Tobler D J,Benning L G.Bacterial diversity in five Icelandic geothermal waters:Temperature and sinter growth rate effects[J].Extremophiles,2011,15(4):473.
    [133]Havig J R,Raymond J,Meyer-Dombard D R,et al.Merging isotopes and community genomics in a siliceous sinter‐depositing hot spring[J].Journal of Geophysical Research Biogeosciences,2011,116(1):99-112.
    [134]Walter M R.Geyserites of Yellowstone National Park:An example of abiogenic"stromatolites"[J].Developments in Sedimentology,1976,20:87-112.
    [135]Renaut R W,Jones B,Tiercelin J J.Rapid in situ silicification of microbes at Loburu hot springs,Lake Bogoria,Kenya Rift Valley[J].Sedimentology,1998,45(6):1083-1103.
    [136]Hinman N W,Lindstrom R F.Seasonal changes in silica deposition in hot spring systems[J].Chemical Geology,1996,132:237-246.
    [137]Gurpreet K,Mountain B W,Stott M B,et al.Temperature and pH control on lipid composition of silica sinters from diverse hot springs in the Taupo Volcanic Zone,New Zealand[J].Extremophiles,2015,19(2):327-344.
    [138]Jones B.Biogenicity of silica precipitation around geysers and hot-spring vents,North Island,New Zealand[J].Journal of Sedimentary Research,1997,67(1):88-104.
    [139]Jones B,Renaut R W,Owen R B.Life cycle of a geyser discharge apron:Evidence from Waikite Geyser,Whakarewarewa geothermal area,North Island,New Zealand[J].Sedimentary Geology,2011,236:77-94.
    [140]Tobler D J,Shaw S,Benning L G.Quantification of initial steps of nucleation and growth of silica nanoparticles:An in-situ,SAXS and DLS study[J].Geochimica et Cosmochimica Acta,2009,73:5377-5393.
    [141]Tobler D J,Benning L G.In situ,and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions[J].Geochimica et Cosmochimica Acta,2013,114:156-168.
    [142]Renaut R W,Bernhart Owen R.Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria,Kenya Rift valley[J].Geology,1988,16(8):699.
    [143]Rimstidt J D,Cole D R.Geothermal mineralization.I.The mechanism of formation of the Beowawe,Nevada,Siliceous sinter deposit[J].American Journal of Science,1983,283(8):861-875.
    [144]Garciavalles M,Fernandezturiel J L,Gimenotorrente D,et al.Mineralogical characterization of silica sinters from the El Tatio geothermal field,Chile[J].American Mineralogist,2008,93(8/9):1373-1383.
    [145]Copeland J J.Yellowstone thermal Myxophyceae[J].Annals of the New York Academy of Sciences,1936,36(1):4-223.
    [146]Konhauser K O,Phoenix V R,Bottrell S H,et al.Microbial-silica interactions in Icelandic hot spring sinter:Possible analogues for some Precambrian siliceous stromatolites[J].Sedimentology,2001,48(2):415-433.
    [147]Cassie V,Cooper R C.A taxonomic guide to thermally associated algae(excluding diatoms)in New Zealand[J].Bibliotheca Phycologica,1989,78:161-255.
    [148]Roy S,Debnath M,Ray S.Cyanobacterial flora of the geothermal spring at Panifala,West Bengal,India[J].Phykos,2014,44(1):1-8.
    [149]LukavskJ,Furnadzhieva S,Pilarski P.Cyanobacteria of the thermal spring at Pancharevo,Sofia,Bulgaria[J].Acta Botanica Croatica,2011,70(2):191-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700