高负荷厌氧生物反应器的三元酸碱缓冲体系特征与调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation and regulation of ternary pH buffer system for anaerobic bioreactor at high loading rate
  • 作者:郁达伟 ; 孟晓山 ; 魏源送
  • 英文作者:YU Dawei;MENG Xiaoshan;WEI Yuansong;State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:厌氧生物反应器 ; 沼气升级 ; pH ; 挥发性有机酸积累 ; 氨氮抑制 ; 碳酸盐缓冲体系
  • 英文关键词:anaerobic bioreactor;;biogas upgrading;;pH;;VFAs accumulation;;ammonia inhibition;;carbonate buffer system
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室;中国科学院生态环境研究中心水污染控制实验室;中国科学院大学;
  • 出版日期:2018-05-23 11:20
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划(No.2016YFD0501405,2016YFE0118500);; 国家自然科学基金(No.21677161)
  • 语种:中文;
  • 页:HJXX201902001
  • 页数:11
  • CN:02
  • ISSN:11-1843/X
  • 分类号:4-14
摘要
高负荷是升流式(Up-flow Anaerobic Sludge Bed, UASB)、内循环厌氧反应器(internal circulation, IC)和厌氧膜生物反应器(anaerobic membrane bioreactor, AnMBR)等厌氧生物反应器发展的趋势,也是实现"沼气升级(biogas upgrading)"的难点.挥发性有机酸(volatile fatty acids, VFAs)和溶解性无机碳(total inorganic carbon, TIC)既是厌氧消化必经的中间产物,又与氨氮等弱碱共同影响高负荷厌氧消化过程的pH变化,并决定着沼气中的甲烷含量.VFAs、TIC和氨氮构成的三元pH酸碱缓冲体系是高负荷厌氧消化"沼气升级"的关键操作条件.本文总结了高负荷厌氧消化过程中pH变化规律和影响,针对不同VFAs/氨氮关系的形成机制,分析了高负荷厌氧消化碳酸盐缓冲体系特征及其对沼气CH_4/CO_2构成的影响.以厌氧膜生物反应器为例,讨论了近年来基于pH在线监测和调控方法、理论模型方面的研究进展,同时对未来的重点研究方向提出展望,以期为今后的高负荷AnMBR研发提供参考.
        High loading rate is a tendency for anaerobic bioreactor for UASB(upflow anaerobic sludge blanket), IC(internal circulation) and AnMBR(anaerobic membrane bioreactor), and it is also a bottleneck for "biogas upgrading". As intermediate products and buffer capacity contributors, the volatile fatty acids(VFAs) and total inorganic carbon(TIC) are the primary endogenous driving forces for pH evolution for anaerobic bioreactor at high loading rate. Meanwhile, ammonia also plays an important role in pH evolution and methanogenesis pathway. The VFAs, TIC and ammonia form a ternary pH buffer system which determines the "biogas upgrading" for anaerobic bioreactor at high loading rate. The purposes of this paper are to summarize the pH evolution for anaerobic bioreactor at high loading rate, to thoroughly review the ternary pH buffer system driven by VFAs and TIC, the advances of pH based online monitoring and automation control strategies, and to propose the future research directions for anaerobic membrane bioreactor at high loading rate.
引文
Amha Y M, Anwar M Z, Brower A,et al. 2018. Inhibition of anaerobic digestion processes: Applications of molecular tools[J]. Bioresource Technology, 247: 999-1014
    Antwi P, Li J, Boadi P O, et al. 2017. Efficiency of an upflow anaerobic sludge blanket reactor treating potato starch processing wastewater and related process kinetics, functional microbial community and sludge morphology[J]. Bioresource Technology, 239: 105-116
    Antwi P, Li J, Boadi P O, et al. 2017b. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network[J]. Bioresource Technology, 228: 106-115
    Antwi P, Li J, Meng J, et al. 2018. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater[J]. Bioresource Technology, 257: 102-112
    Batstone D J, Keller J, Angelidaki I, et al. 2002. The IWA Anaerobic Digestion Model No 1 (ADM1)[J]. Water Science and Technology, 45: 65-73
    Bierer B, Perez A O, W?llenstein J, et al. 2016. In-situ biogas sensing system for enabling spatially resolved online determination of the gas composition of the fermenter[J]. Procedia Engeneer, 168: 1634-1637
    Braguglia C M, Gallipoli A, Gianico A, et al. 2018. Anaerobic bioconversion of food waste into energy: A critical review[J]. Bioresource Technology, 248: 37-56
    Charnier C, Latrille E, Lardon L, et al. 2016. Combining pH and electrical conductivity measurements to improve titrimetric methods to determine ammonia nitrogen, volatile fatty acids and inorganic carbon concentrations[J]. Water Research, 95: 268-279
    Chen C, Guo W, Ngo H H, et al. 2016. Challenges in biogas production from anaerobic membrane bioreactors[J]. Renew Energy, 98: 120-134
    Chen L, Cong R G, Shu B, et al. 2017. A sustainable biogas model in China: The case study of Beijing Deqingyuan biogas project[J]. Renewable & Sustainable Energy Reviews, 78: 773-779
    Chen Q, Liu T, 2017. Biogas system in rural China: Upgrading from decentralized to centralized? Renew[J]. Renewable & Sustainable Energy Reviews, 78: 933-944
    Danish Energy Agency, Ministry of Energy & Utilities and Climate, 2017. Biogas production in Denmark[R]. Copenhagen, 2-3
    Dong F, Zhao Q B, Li W W, et al. 2011. Novel online monitoring and alert system for anaerobic digestion reactors[J]. Environmental Science and Technology, 45: 9093-9100
    European Commission, Directorate-general for energy, 2016. proposal for a directive of the european parliament and of the council on the promotion of the use of energy from renewable sources (recast)[R]. 2-5
    Fang H H P, Zhang T. 2015. Anaerobic Biotechnology: Environmental Protection And Resource Recovery[M]. 1st ed. Imperial College Press, London.
    Fotidis I A, Treu L, Angelidaki I, 2017. Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes[J]. Journal of Cleaner Production, 166: 1305-1313
    Fotidis I A, Wang H, Fiedel N R, et al. 2014. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate[J]. Environmental Science and Technology, 48: 7669-7676
    Hao L P, Lü F, Li L, et al. 2012. Shift of pathways during initiation of thermophilic methanogenesis at different initial pH[J]. Bioresource Technology, 126: 418-424
    Hinken L, Huber M, Weichgrebe D, et al. 2014. Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests[J]. Water Research, 64: 82-93
    Ho L, Ho G. 2012. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: Use of pH reduction, zeolite, biomass and humic acid[J]. Water Research, 46: 4339-4350
    Hu D, Su H, Chen Z, et al. 2017. Performance evaluation and microbial community dynamics in a novel AnMBR for treating antibiotic solvent wastewater[J]. Bioresource Technology, 243: 218-227
    Huang C, Zhao Y, Li Z, et al. 2015. Enhanced elementary sulfur recovery with sequential sulfate-reducing, denitrifying sulfide-oxidizing processes in a cylindrical-type anaerobic baffled reactor[J]. Bioresource Technology, 192: 478-485
    Huang W, Zhao Z, Yuan T, et al. 2016. Effective ammonia recovery from swine excreta through dry anaerobic digestion followed by ammonia stripping at high total solids content[J]. Biomass and Bioenergy, 90: 139-147
    Khan M A, Ngo H H, Guo W S, et al. 2016. Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors[J]. Bioresource Technology, 214: 816-825
    Kougias P G, Treu L, Benavente D P, et al. 2017. Ex-situ biogas upgrading and enhancement in different reactor systems[J]. Bioresource Technology, 225: 429-437
    Lay J J, Li Y Y, Noike T. 1998. The influence of pH and ammonia concentration on the methane production in high-solids digestion processes[J]. Water Environmental Research, 70: 1075-1082
    Lee D H. 2017. Evaluation the financial feasibility of biogas upgrading to biomethane, heat, CHP and AwR[J]. International Journal of Hydrogen Energy, 42: 27718-27731
    Lemmer A, Merkle W, Baer K, et al. 2017. Effects of high-pressure anaerobic digestion up to 30 bar on pH-value, production kinetics and specific methane yield[J]. Energy, 138: 659-667
    Li L, Peng X, Wang X, et al. 2018. Anaerobic digestion of food waste: A review focusing on process stability[J]. Bioresource Technology, 248: 20-28
    Lima D M F, Rodrigues, J A D et al. 2016. Anaerobic modeling for improving synergy and robustness of a manure co-digestion process[J]. Brazilian Journal Chemistry Engineering, 33: 871-883
    Lovato G, Alvarado-Morales M, Kovalovszki A, et al. 2017. In-situ biogas upgrading process: Modeling and simulations aspects[J]. Bioresource Technology, 245: 332-341
    Lu X, Zhen G, Ni J, et al. 2017. Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor[J]. Water Research, 108: 137-150
    Luo G, Li J, Li Y, et al. 2016. Performance, kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate: Role of external hydraulic circulation[J]. Bioresource Technology, 222: 470-477
    Lützh?ft H C H, Boe K, Fang C, et al. 2014. Comparison of VFA titration procedures used for monitoring the biogas process[J]. Water Research, 54: 262-272
    Meng F, Chae S R, Drews A, et al. 2009. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material[J]. Water Research, 43: 1489-1512
    Meng X S, Yu D W, Wei Y S, et al. 2018.Endogenous ternary pH buffer system with ammonia-carbonates-VFAs in high solid anaerobic digestion of swine manure: An alternative for alleviating ammonia inhibition? [J]. Process Biochemistry, 69: 144-152
    Mortezaei Y, Amani T, Elyasi S, et al. 2018. High-rate anaerobic digestion of yogurt wastewater in a hybrid EGSB and fixed-bed reactor: Optimizing through response surface methodology[J]. Process Safety & Environmental Protection, 113: 255-263
    Motteran F, Lima Gomes P C F, Silva E L, et al. 2017. Simultaneous determination of anionic and nonionic surfactants in commercial laundry wastewater and anaerobic fluidized bed reactor effluent by online column-switching liquid chromatography/tandem mass spectrometry[J]. Science of the Total Environment, 580(C): 1120-1128
    Mu Z X, He C S, Jiang J K, et al. 2018. A modified two-point titration method for the determination of volatile fatty acids in anaerobic systems[J]. Chemosphere,204: 251-256
    Muňoz R, Meier L, Diaz I, et al. 2015. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading[J]. Reviews in Environmental Science & Bio/Technology, 14(4): 727-759
    Ng K K, Shi X, Ng H Y. 2015. Evaluation of system performance and microbial communities of abioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater[J]. Water Research, 81: 311-324
    Nguyen D, Gadhamshetty V, Nitayavardhana S, et al. 2015. Automatic process control in anaerobic digestion technology: A critical review[J]. Bioresource Technology, 193: 513-522
    Olsson G. 2012. ICA and me - A subjective review[J]. Water Research, 46: 1585-1624
    Poirier S, Desmond-Le Quéméner E, Madigou C, et al. 2016. Anaerobic digestion of biowaste under extreme ammonia concentration: Identification of key microbial phylotypes[J]. Bioresource Technology, 207: 92-101
    Ren Y, Yu M, Wu C, et al. 2018. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies[J]. Bioresource Technology, 247: 1069-1076
    Rico C, Montes J A, Rico J L. 2017. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors[J]. Bioresource Technology, 238: 147-156
    Salis A, Monduzzi M. 2016. Not only pH. specific buffer effects in biological systems[J]. Current Opinion in Colloid & Interface Science, 23: 1-9
    Selvaraj R, Abdul A N, Vasa N J, et al. 2017. Monitoring of CO2 and CH4 composition in a biogas matrix from different biomass structures. Sensors Actuators[J]. Bioprocess & Biosystems Engineering, 249: 378-385
    Sprott G D, Patel G B. 1986. Ammonia toxicity in pure cultures of methanogenic bacteria[J]. Systematic & Applied Microbiology, 7(2): 358-363
    Stockl A, Lichti F. 2018. Near-infrared spectroscopy (NIRS) for a real time monitoring of the biogas process[J]. Bioresource Technology, 247: 1249-1252
    Strumn W, Morgan J J, 汤鸿霄. 1984. 水化学-天然水体化学平衡导论[M]. 北京:科学出版社
    Tian H, Fotidis I A, Mancini E, et al. 2017. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia[J]. Bioresource Technology, 232: 1-9
    Ullah K I, Hafiz M H. 2017. Biogas as a renewable energy fuel-A review of biogas upgrading, utilisation and storage[J]. Energy Conversion & Management, 150: 277-294
    Vasco-Correa J, Khanal S, Manandhar A, et al. 2018. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies[J]. Bioresource Technology, 247: 1015-1026
    Wang D, Chen Y. 2015. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion[J]. Critical Reviews in Biotechnology,36(5): 816-828
    Wang H, Fotidis I A, Angelidaki I. 2016. Ammonia-LCFA synergetic co-inhibition effect in manure-based continuous biomethanation process[J]. Bioresource Technology, 209: 282-289
    Wang H, Tao Y, Gao D, et al. 2015. Microbial population dynamics in response to increasing loadings of pre-hydrolyzed pig manure in an expanded granular sludge bed[J]. Water Research, 87: 29-37
    Wang J, Xu W, Yan J, et al. 2014. Study on the flow characteristics and the wastewater treatment performance in modified internal circulation reactor[J]. Chemosphere, 117: 631-637
    Wang W, Xie L, Luo G, et al. 2013. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading[J]. Bioresource Technology, 146: 234-239
    Wang Y, Zang B, Gong X, et al. 2017. Effects of pH buffering agents on the anaerobic hydrolysis acidification stage of kitchen waste[J]. Waste Management, 68: 603-609
    Ward A J, Bruni E, Lykkegaard M K, et al. 2011. Real time monitoring of a biogas digester with gas chromatography, near-infrared spectroscopy, and membrane-inlet mass spectrometry[J]. Bioresource Technology, 102: 4098-4103
    Wongnate T, Sliwa D, Ginovska B, et al. 2016. The radical mechanism of biological methane synthesis by methylcoenzyme M reductase[J]. Science, 352: 953-958
    Wu Y, Wang C, Liu X, et al. 2016. A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment[J]. Bioresource Technology, 211: 16-23
    王子月, 张长平, 孟晓山, 等. 2018. 猪粪与酒糟混合厌氧发酵的产甲烷和三元pH缓冲体系特征[J]. 环境工程学报, 8: 21-27
    Xu Q, Li X, Ding R, et al. 2017. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge[J]. Water Research, 124: 269-279
    郁达伟. 2016.厌氧膜生物反应器处理高浓度有机废水及其优化研究[D]. 北京:中国科学院生态环境研究中心
    Yang B, Wang M, Wang J, et al. 2018. Mechanism of high contaminant removal performance in the expanded granular sludge blanket (EGSB) reactor involved with granular activated carbon for low-strength wastewater treatment[J]. Chemical Engineering Journal, 334: 1176-1185
    Yen F C, Chang T C, Hu C C, et al. 2016. Feasibility of combined upflow anaerobic sludge blanket-aerobic membrane bioreactor system in treating purified terephthalic acid wastewater and polyimide membrane for biogas purification[J]. Journal of Environmental Chemical Engineering, 4(4): 4113-4119
    Yu D, Liu J, Sui Q, et al. 2016. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater[J]. Bioresource Technology, 203: 62-70
    Yu Z, Leng X, Zhao S, et al. 2018. A review on the applications of microbial electrolysis cells in anaerobic digestion[J]. Bioresource Technology, 255: 340-348
    Yuan H, Zhu N. 2016. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion[J]. Renewable & Sustainable Energy Reviews, 58: 429-438
    Zaher U. 2005. Modelling and monitoring the anaerobic digestion process in view of optimisation and smooth operation of WWTP′s[D]. Ghent: Ghent University.
    Zhang T, Mao C, Zhai N, et al. 2015. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk[J]. Waste Management, 35: 119-126
    Zhao Y, Yu J, Liu J, et al. 2016. Material and microbial changes during corn stalk silage and their effects on methane fermentation[J]. Bioresource Technology, 222: 89-99
    中石油咨询中心. 2018. “气荒”的警示与对策建议[J]. 中国能源报, 125(3): 14
    张玉秀, 孟晓山, 王亚炜, 等. 2018. 畜禽废弃物厌氧消化过程的氨氮抑制及其应对措施研究进展[J]. 环境工程学报, 12(4): 985-998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700