外生菌根共生:共生真菌多样性及菌根形成的分子机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ectomycorrhizal symbioses:Diversity of mycobionts and molecular mechanisms that entail the development of ectomycorrhizae
  • 作者:冯邦 ; 杨祝良
  • 英文作者:FENG Bang;YANG ZhuLiang;CAS Key Laboratory for Plant Diversity and Biogeography of East Asia,Kunming Institute of Botany,Chinese Academy of Sciences;
  • 关键词:外生菌根 ; 专一性 ; 物种分化 ; 信号分子 ; 比较基因组
  • 英文关键词:ectomycorrhiza;;specificity;;speciation;;signaling molecules;;comparative genomics
  • 中文刊名:JCXK
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:中国科学院昆明植物研究所中国科学院东亚植物多样性与生物地理学重点实验室;
  • 出版日期:2019-04-17 18:52
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:v.49
  • 基金:中国科学院战略性先导科技专项(批准号:XDB31000000)资助
  • 语种:中文;
  • 页:JCXK201904014
  • 页数:9
  • CN:04
  • ISSN:11-5840/Q
  • 分类号:150-158
摘要
大约2%的维管植物能够与17~18个目约280个属的真菌形成外生菌根关系.外生菌根关系的形成、宿主植物的专一化和宿主转移等事件可能是共生真菌物种分化的重要驱动力.比较基因组学研究发现,外生菌根真菌丢失了大量与植物细胞壁物质降解相关的基因.在外生菌根形成过程中,真菌与宿主植物之间借助多样化的信号分子完成相互识别,并且外生菌根真菌能够借助分泌效应蛋白抑制宿主植物的防御反应,促进菌根形成.本文对外生菌根真菌的多样性和分布规律,以及外生菌根形成的分子机制等方面进行了综述,并据此对后续研究提出展望.
        Approximately 2% of vascular plants are involved in ectomycorrhizal symbioses with about 280 genera of higher fungi from 17–18 fungal orders.The development of ectomycorrhizal symbiosis,host specificity,and host-switch events appear to be key drivers for the speciation of ectomycorrhizal fungi.Comparative genomics indicates that ectomycorrhizal fungi have lost a set of genes that control the decay of organic matter contained in plant cell walls.During the formation of ectomycorrhizae,mycobionts and host plants require diversified signaling molecules to induce their bilateral communication;at the same time,mycobionts can release some mycorrhizal-induced small secreted proteins,which can help them escape plant defenses and thereby enable them to colonize plant roots.We present a review on the diversity and geographical distribution pattern of ectomycorrhizal fungi and on molecular mechanisms contributing to the development of ectomycorrhizae.Based on this,we also suggeste several future prospects.
引文
1 Brundrett M C,Tedersoo L.Evolutionary history of mycorrhizal symbioses and global host plant diversity.New Phytol,2018,220:1108-1115
    2 Smith M E,Read D.Mycorrhizal Symbiosis.3rd ed.New York:Elsevier,2008
    3 Strullu-Derrien C,Selosse M A,Kenrick P,et al.The origin and evolution of mycorrhizal symbioses:From palaeomycology to phylogenomics.New Phytol,2018,220:1012-1030
    4 Selosse M A,Le Tacon F.The land flora:A phototroph-fungus partnership?Trends Ecol Evol,1998,13:15-20
    5 Brundrett M C.Coevolution of roots and mycorrhizas of land plants.New Phytol,2002,154:275-304
    6 Martin F,Kohler A,Murat C,et al.Unearthing the roots of ectomycorrhizal symbioses.Nat Rev Microbiol,2016,14:760-773
    7 Tedersoo L,Smith M E.Ectomycorrhizal fungal lineages:Detection of four new groups and notes on consistent recognition of ectomycorrhizal taxa in high-throughput sequencing studies.In:Tedersoo L,ed.Biogeography of Mycorrhizal Symbiosis.Gewerbestrasse:Springer,2017.125-142
    8 Tedersoo L,May T W,Smith M E.Ectomycorrhizal lifestyle in fungi:Global diversity,distribution,and evolution of phylogenetic lineages.Mycorrhiza,2010,20:217-263
    9 Tedersoo L,Smith M E.Lineages of ectomycorrhizal fungi revisited:Foraging strategies and novel lineages revealed by sequences from belowground.Fungal Biol Rev,2013,27:83-99
    10 Tedersoo L,Brundrett M C.Evolution of ectomycorrhizal symbiosis in plants.In:Tedersoo L,ed.Biogeography of Mycorrhizal Symbiosis.Gewerbestrasse:Springer,2017.407-467
    11 Choi J J,Kim S H.A genome tree of life for the fungi kingdom.Proc Natl Acad Sci USA,2017,114:9391-9396
    12 Hibbett D S,Bauer R,Binder M,et al.Agaricomycetes.In:Mc Laughlin D J,Spatafora J W,eds.The Mycota:A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research.Heidelberg:Springer,2014.373-429
    13 Hibbett D S,Binder M,Bischoff J F,et al.A higher-level phylogenetic classification of the fungi.Mycol Res,2007,111:509-547
    14 Byng J W,Chase M W,Christenhusz M J M,et al.Angiosperm Phylogeny G.An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV.Botan J Linnean Soc,2016,181:1-20
    15 Ran J H,Shen T T,Wang M M,et al.Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms.Proc R Soc B,2018,285:20181012
    16 Dearnaley J D W,Martos F,et al.Orchid mycorrhizas:Molecular ecology,physiology,evolution and conservation aspects.In:Hock B,ed.Fungal Associations.2nd ed.Gewerbestrasse:Springer,2012.207-230
    17 Midgley D J,Rosewarne C P,Greenfield P,et al.Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen.nov.sp.nov.,the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere.Mycorrhiza,2016,26:345-352
    18 Tedersoo L,Bahram M,Jairus T,et al.Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar.Mol Ecol,2011,20:3071-3080
    19 Wang B,Qiu Y L.Phylogenetic distribution and evolution of mycorrhizas in land plants.Mycorrhiza,2006,16:299-363
    20 Hibbett D S,Matheny P B.The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses.BMC Biol,2009,7:13
    21 Tedersoo L,Bahram M,P?lme S,et al.Global diversity and geography of soil fungi.Science,2014,346:1256688
    22 Wilson A W,Hosaka K,Mueller G M.Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus Laccaria.New Phytol,2017,213:1862-1873
    23 Wu G,Feng B,Xu J,et al.Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae.Fungal Divers,2014,69:93-115
    24 Cui Y Y,Cai Q,Tang L P,et al.The family Amanitaceae:Molecular phylogeny,higher-rank taxonomy and the species in China.Fungal Divers,2018,91:5-230
    25 Sato H,Tanabe A S,Toju H.Host shifts enhance diversification of ectomycorrhizal fungi:Diversification rate analysis of the ectomycorrhizal fungal genera Strobilomyces and Afroboletus with an 80-gene phylogeny.New Phytol,2017,214:443-454
    26 Han L H,Feng B,Wu G,et al.African origin and global distribution patterns:Evidence inferred from phylogenetic and biogeographical analyses of ectomycorrhizal fungal genus Strobilomyces.J Biogeogr,2018,45:201-212
    27 Looney B P,Ryberg M,Hampe F,et al.Into and out of the tropics:Global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi.Mol Ecol,2016,25:630-647
    28 Li Y C,Yang Z L,Tolgor B.Phylogenetic and biogeographic relationships of Chroogomphus species as inferred from molecular and morphological data.Fungal Divers,2009,38:85-104
    29 Qin J,Horak E,Popa F,et al.Species diversity,distribution patterns,and substrate specificity of Strobilurus.Mycologia,2018,110:584-604
    30 Kohler A,Kuo A,Nagy L G,et al.Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.Nat Genet,2015,47:410-415
    31 Floudas D,Binder M,Riley R,et al.The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes.Science,2012,336:1715-1719
    32 Nagy L G,Riley R,Tritt A,et al.Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities.Mol Biol Evol,2016,33:959-970
    33 Martinez D,Challacombe J,Morgenstern I,et al.Genome,transcriptome,and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion.Proc Natl Acad Sci USA,2009,106:1954-1959
    34 Hori C,Gaskell J,Igarashi K,et al.Genomewide analysis of polysaccharides degrading enzymes in 11 white-and brown-rot Polyporales provides insight into mechanisms of wood decay.Mycologia,2013,105:1412-1427
    35 Tisserant E,Malbreil M,Kuo A,et al.Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis.Proc Natl Acad Sci USA,2013,110:20117-20122
    36 Peter M,Kohler A,Ohm R A,et al.Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum.Nat Commun,2016,7:12622
    37 Martin F,Kohler A,Murat C,et al.Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis.Nature,2010,464:1033-1038
    38 Martin F,Aerts A,Ahrén D,et al.The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis.Nature,2008,452:88-92
    39 Lagrange H,Jay-Allgmand C,Lapeyrie F.Rutin,the phenolglycoside from eucalyptus root exudates,stimulates Pisolithus hyphal growth at picomolar concentrations.New Phytol,2001,149:349-355
    40 Daguerre Y,Plett J M,Veneault-Fourrey C.Signaling pathways driving the development of ectomycorrhizal symbiosis.In:Martin F,ed.Molecular Mycorrhizal Symbiosis.New Jersey:Wiley Blackwell,2017.141-157
    41 Vayssières A,Pěn?ík A,Felten J,et al.Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism,signaling,and response.Plant Physiol,2015,169:890-902
    42 Krause K,Henke C,Asiimwe T,et al.Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on Tricholoma vaccinumspruce ectomycorrhiza.Appl Environ Microbiol,2015,81:7003-7011
    43 Felten J,Kohler A,Morin E,et al.The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling.Plant Physiol,2009,151:1991-2005
    44 Ditengou F A,Müller A,Rosenkranz M,et al.Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture.Nat Commun,2015,6:6279
    45 Plett K L.Fresh knowledge for an old relationship:New discoveries in molecular mycorrhizal research.New Phytol,2018,217:26-28
    46 Maillet F,Poinsot V,AndréO,et al.Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza.Nature,2011,469:58-63
    47 Gough C,Bécard G.Strigolactones and lipochitooligosaccharides as molecular communication signals in the arbuscular mycorrhizal symbiosis.In:Martin F,ed.Molecular Mycorrhizal Symbiosis.New Jersey:Wiley Blackwell,2017.107-123
    48 Martin F M,Uroz S,Barker D G.Ancestral alliances:Plant mutualistic symbioses with fungi and bacteria.Science,2017,356:eaad4501
    49 Barker D G,Chabaud M,Russo G,et al.Nuclear Ca2+signalling in arbuscular mycorrhizal and actinorhizal endosymbioses:On the trail of novel underground signals.New Phytol,2017,214:533-538
    50 Luginbuehl L,Oldroyd G E.Calcium signaling and transcriptional regulation in arbuscular mycorrhizal symbiosis.In:Martin F,eds.Molecular Mycorrhizal Symbiosis.New Jersey:Wiley Blackwell,2017.125-140
    51 Plett J M,Kemppainen M,Kale S D,et al.A secreted effector protein of Laccaria bicolor is required for symbiosis development.Curr Biol,2011,21:1197-1203
    52 Plett J M,Daguerre Y,Wittulsky S,et al.Effector Mi SSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid(JA)responsive genes.Proc Natl Acad Sci USA,2014,111:8299-8304
    53 Tedersoo L.Ectomycorrhizal fungi:Diversity and community structure in Estonia,Seychelles and Australia.Dissertation for Doctoral Degree.Tartu:University of Tartu,2007
    54 Corrales A,Arnold A E,Ferrer A,et al.Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana(Juglandaceae)in a Neotropical montane forest.Mycorrhiza,2016,26:1-17
    55 Smith M E,Henkel T W,Catherine Aime M,et al.Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest.New Phytol,2011,192:699-712
    56 Bahram M,P?lme S,K?ljalg U,et al.Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran.New Phytol,2012,193:465-473
    57 Garcia M O,Smith J E,Luoma D L,et al.Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.Mycorrhiza,2016,26:275-286
    58 Murata M,Kinoshita A,Nara K.Revisiting the host effect on ectomycorrhizal fungal communities:Implications from host-fungal associations in relict Pseudotsuga japonica forests.Mycorrhiza,2013,23:641-653
    59 Gao Q,Yang Z L.Diversity and distribution patterns of root-associated fungi on herbaceous plants in alpine meadows of southwestern China.Mycologia,2016,108:281-291
    60 Mundra S,Bahram M,Tedersoo L,et al.Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic.Mol Ecol,2015,24:6289-6302
    61 Timling I,Dahlberg A,Walker D A,et al.Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic.Ecosphere,2012,3:art111-111
    62 An H M,Xu A S.Diversity and distribution of the ectomycorrhizal fungi in the Shergyla Mountain in Xizang(in Chinese).Guizhou Agricul Sci,2016,44:162-165[安红梅,徐阿生.西藏色季拉山外生菌根菌资源的多样性及其分布规律.贵州农业科学,2016,44:162-165]
    63 Wang S R.Studies on macrofungi diversity in alpine forests regions of Tibet(in Chinese).Dissertation for the Doctoral Degree.Changchun:Northeast Normal University,2014[王术荣.西藏高寒森林地区大型真菌多样性研究.博士学位论文.长春:东北师范大学,2014]
    64 Huang J,Nara K,Zong K,et al.Ectomycorrhizal fungal communities associated with Masson pine(Pinus massoniana)and white oak(Quercus fabri)in a manganese mining region in Hunan Province,China.Fungal Ecol,2014,9:1-10
    65 Cui L,Mu L.Ectomycorrhizal communities associated with Tilia amurensis trees in natural versus urban forests of Heilongjiang in northeast China.J For Res,2016,27:401-406
    66 Ge Z W,Smith M E,Zhang Q Y,et al.Two species of the Asian endemic genus Keteleeria form ectomycorrhizas with diverse fungal symbionts in southwestern China.Mycorrhiza,2012,22:403-408
    67 Han Q,Huang J,Long D,et al.Diversity and community structure of ectomycorrhizal fungi associated with Larix chinensis across the alpine treeline ecotone of Taibai Mountain.Mycorrhiza,2017,27:487-497
    68 Long D,Liu J,Han Q,et al.Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the Loess Plateau,China.Sci Rep,2016,6:24336
    69 Wang X,Liu J,Long D,et al.The ectomycorrhizal fungal communities associated with Quercus liaotungensis in different habitats across northern China.Mycorrhiza,2017,27:441-449
    70 Wen Z,Murata M,Xu Z,et al.Ectomycorrhizal fungal communities on the endangered Chinese Douglas-fir(Pseudotsuga sinensis)indicating regional fungal sharing overrides host conservatism across geographical regions.Plant Soil,2015,387:189-199
    71 Xie X D.Species diversity of ectomycorrhizae-forming fungi on Pinus yunnanensis seedlings and the mycorrhizal morphology(in Chinese).Dissertation for the Master’s Degree.Kunming:Kunming Institute of Botany,Chinese Academy of Sciences,2010[谢雪丹.云南松幼苗外生菌根菌多样性和外生菌根形态学研究.硕士学位论文.昆明:中国科学院昆明植物研究所,2010]
    72 Blaalid R,Davey M L,Kauserud H,et al.Arctic root-associated fungal community composition reflects environmental filtering.Mol Ecol,2014,23:649-659
    73 Gao C,Zhang Y,Shi N N,et al.Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession.New Phytol,2015,205:771-785
    74 Kipfer T,Moser B,Egli S,et al.Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps.Oecologia,2011,167:219-228
    75 de Román M,de Miguel A M.Post-fire,seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L.forest over a 3-year period.Mycorrhiza,2005,15:471-482
    76 Tedersoo L,Bahram M,Cajthaml T,et al.Tree diversity and species identity effects on soil fungi,protists and animals are context dependent.ISME J,2016,10:346-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700