基于微动特性的组合活塞顶和裙部结合面优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization Design of the Joint Surface of the Piston Top and Skirt Based on Fretting Characteristics
  • 作者:王一 ; 李林剑 ; 巫立民 ; 李梅 ; 崔毅
  • 英文作者:Wang Yi;Li Linjian;Wu Limin;Li Mei;Cui Yi;Key Laboratory of Power Machinery and Engineering of Ministry of Education,Shanghai Jiao Tong University;Shanghai Marine Diesel Engine Research Institute;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration;
  • 关键词:活塞 ; 微动特性 ; 优化 ; 有限元模型
  • 英文关键词:piston;;fretting characteristic;;optimization;;finite element model
  • 中文刊名:NRJX
  • 英文刊名:Transactions of CSICE
  • 机构:上海交通大学动力机械及工程教育部重点实验室;七一一研究所;高新船舶与深海开发装备协同创新中心;
  • 出版日期:2018-07-25
  • 出版单位:内燃机学报
  • 年:2018
  • 期:v.36;No.178
  • 基金:高技术船舶科研资助项目(CDGC01-KT0305)
  • 语种:中文;
  • 页:NRJX201804011
  • 页数:8
  • CN:04
  • ISSN:12-1086/TK
  • 分类号:85-92
摘要
针对某柴油机活塞顶和裙部结合面上出现的微动磨损现象,建立了活塞的有限元模型,根据Archard磨损计算模型和微动疲劳参数(SWT),通过分析工作循环不同时刻接触面上的应力以及相对滑移分布,获得接触面上微动磨损参数(FD)和SWT,并且微动磨损参数的分布与试验现象吻合.为了提高微动疲劳寿命,以SWT为优化目标,对裙部结合面母线进行了优化设计,得到的优化型面使SWT显著下降,改善了接触面的微动疲劳性能.
        A finite element model of the piston was established in order to analyze the phenomenon of fretting wear on the joint surface of the piston top and skirt of a diesel engine.According to the Archard model and smith-wastontopper(SWT),the stress on the contact surface at different moments of the working cycle and the relative slip were analyzed to obtain the friction force and fretting displacement(FD) and SWT of the contact surface.It is found that the distribution of the FD is consistent with the experimental phenomena.In order to improve the fretting fatigue life,the skirt joint surface profile was optimized.The results show that the optimized surface obviously reduces the SWT and improves the fretting fatigue performance of the contact surface.
引文
[1]Archard J F.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-988.
    [2]Ruiz C,Boddington P H B,Chen K C.An investigation of fatigue and fretting in a dovetail joint[J].Experimental Mechanics,1984,24(3):208-217.
    [3]Socie D.Multiaxial fatigue damage models[J].Journal of Engineering Materials and Technology,2009,109(4):293-298.
    [4]臧权同.连杆大端及其齿面的合理设计[J].内燃机学报,1985,3(2):21-36.
    [5]高尾武,李清观.连杆大端和锯齿形最佳结构的研究[J].柴油机,1982,6:3-14.
    [6]方伟.发动机连杆衬套微动特性研究[J].内燃机与配件,2013,7:6-8.
    [7]徐进,朱旻昊,江晓禹,等.柴油机连杆齿形配合面裂纹成因研究[J].机械工程材料,2003,27(4):51-54.
    [8]廖日东,朱东,陈航.基于二维模型的连杆齿形配合面微动数值分析[J].北京理工大学学报,2007,27(12):1065-1069.
    [9]Jung H S,Sung C A,Jong G B.Fretting damage prediction of connecting rod of marine diesel engine[J].Journal of Mechanical Science and Technology,2011,25(2):441-447
    [10]赵俊生,杜平,樊文欣.柴油机连杆衬套微动特性研究[J].机械强度,2015,37(2):209-213
    [11]郭建.基于仿真分析的发动机机体微动疲劳基础研究[D].太原:中北大学机电工程学院,2012.
    [12]廖日东,左正兴,樊利霞,等.发动机零部件有限元技术应用的新进展[J].内燃机学报,1999,17(2):190-197.
    [13]孙军,桂长林,李震.内燃机曲轴强度研究的现状、讨论与展望[J].内燃机学报,2002,20(2):179-184.
    [14]卢熙群,何涛,邹德全,等.基于传热系数反求法的船用柴油机组合活塞热分析[J].内燃机工程,2012,33(4):71-76.
    [15]钟伟,刘金星,李全.船用大功率柴油机组合式活塞热结构耦合分析及温度场预测[J].柴油机,2014,36(5):24-27.
    [16]梁刚.中速大功率柴油机组合活塞的有限元分析[D].上海交通大学机械与动力工程学院,2007.
    [17]曹金凤.Python语言在Abaqus中的应用[M].机械工业出版社,2011:125-208.
    [18]Sum W S,Williams E J,Leen S B.Finite element,critical-plane,fatigue life prediction of simple and complex contact configurations[J].International Journal of Fatigue,2005,27(4):403-416.
    [19]Mc Coll I R,Ding J,Leen S B.Finite element simulation and experimental validation of fretting wear[J].Wear,2004,256(11):1114-1127.
    [20]Ding J,Bandak G,Leen S B,et al.Experimental characterisation and numerical simulation of contact evolution effect on fretting crack nucleation for Ti-6Al-4V[J].Tribology International,2009,42(11):1651-1662.
    [21]屠丹红,姜树李,曹茉莉.498连杆组件的有限元分析[J].内燃机学报,2004,22(2):176-181.
    [22]Schittkowski K.Nlpqlp:A Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search-user's guide[R].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700