厌氧序批反应器加载活性炭对厌氧产氢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Activated Carbon Amended ASBR on Anaerobic Fermentative Hydrogen Production
  • 作者:谢丽 ; 王磊 ; 罗刚 ; 周琪
  • 英文作者:XIE Li1,WANG Lei1,LUO Gang2,ZHOU Qi1(1.State Key Laboratory of Pollution Control and Resources Reuse,Tongji University,Shanghai 200092,China;2.Department of Environment,Technical University of Denmark,Lyngby 2800,Denmark)
  • 关键词:厌氧序批式反应器(ASBR) ; 活性炭 ; 水力停留时间(HRT) ; 厌氧发酵产氢
  • 英文关键词:anaerobic sequence batch reactor(ASBR);activated carbon;hydraulic retention time(HRT);fermentative hydrogen production
  • 中文刊名:TJDZ
  • 英文刊名:Journal of Tongji University(Natural Science)
  • 机构:同济大学污染控制与资源化研究国家重点实验室;丹麦技术大学环境系;
  • 出版日期:2013-05-23 11:24
  • 出版单位:同济大学学报(自然科学版)
  • 年:2013
  • 期:v.41
  • 基金:国家自然科学基金(51178326)
  • 语种:中文;
  • 页:TJDZ201305016
  • 页数:7
  • CN:05
  • ISSN:31-1267/N
  • 分类号:92-98
摘要
在初始pH值为6.0、温度为60℃、水力停留时间(HRT)分别为48,24,16,12h条件下研究了粗、细活性炭载体的添加对厌氧序批式反应器(ASBR)利用葡萄糖厌氧发酵产氢的影响.结果表明添加活性炭载体能使ASBR系统运行更加稳定(出水pH值和氢气产量波动较小),提高氢气产率(葡萄糖产生的氢气的物质的量)和产氢速率(反应器单位有效体积产生的氢气体积).HRT为48,24,16,12h时细活性炭生物载体的添加使得ASBR反应器氢气产率分别提高65%,63%,54%,56%.HRT为12h时添加细活性炭的ASBR产氢速率达到最大,为(7.09±0.31)L.(L.d)-1,相应的氢气产率为(1.42±0.03)mol.mol-1.主要代谢产物为乙醇、乙酸、丙酸和正丁酸,其中乙酸和正丁酸占出水溶解性代谢产物的质量分数分别高达30%~34%和46%~66%,是典型的丁酸型发酵,加载活性炭可以提高ASBR反应器出水溶解性代谢产物质量浓度.
        The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time(HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60℃.Experimental results showed that the performance of activated carbon amended anazrobic seguencs batch reactor(ASBRs) was more stable than that of ASBRs without activated carbon addition regarding on hydrogen production and pH.Higher hydrogen yield(HY) and hydrogen producing rate(HPR) were observed in the activated carbon amended ASBRs,with 65%,63%,54%,56% enhancement of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges,and the maximum HPR of(7.09±0.31)L·(L·d)-1 and HY of(1.42±0.03) mol·mol-1 was obtained at HRT of 12h.The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid,accounting for 46%~66% and 30%~34% of total soluble metabolic products(SMP),respectively,indicating that the dominant H2 producers in the mixed culture belonged to acidogenic bacteria that underwent butyrate-type fermentation.In addition,higher concentration of volatile fatty acid(VFA) generation was observed in the activated carbon amended ASBRs.
引文
[1]李玉友,褚春凤,堆洋平.厌氧发酵生物制氢微生物及工艺开发的研究进展[J].环境科学学报,2009,29(8):1569.LI Yuyou,CHU Chunfeng,AKUTSU Yohei.Bacterialcommunity and process development for anaerobic hydrogenfermentation[J].Acta Scientiae Circumstantiae,2009,29(8):1569.
    [2]Show K Y,Zhang Z P,Tay J H,et al.Critical assessment ofanaerobic processes for continuous biohydrogen productionfrom organic wastewater[J].International Journal ofHydrogen Energy,2010,35(24):13350.
    [3]Mohan S V.Harnessing of biohydrogen from wastewatertreatment using mixed fermentative consortia:Processevaluation towards optimization[J].International Journal ofHydrogen Energy,2009,34(17):7460.
    [4]Shin H S,Arooj M F,Han S K,et al.Sludge characteristics inanaerobic SBR system producing hydrogen gas[J].WaterResearch,2007,41(6):1177.
    [5]Ren N Q,Tang J,Liu B F,et al.Biological hydrogenproduction in continuous stirred tank reactor systems withsuspended and attached microbial growth[J].InternationalJournal of Hydrogen Energy,2010,35(7):2807.
    [6]Hawkes F R,Dinsdale R,Hawkes D L,et al.Sustainablefermentative hydrogen production:challenges for processoptimisation[J].International Journal of Hydrogen Energy,2002,27(11/12):1339.
    [7]Babu V L,Mohan S V,Sarma P N.Influence of reactorconfiguration on fermentative hydrogen production duringwastewater treatment[J].International Journal of HydrogenEnergy,2009,34(8):3305.
    [8]Kim S H,Han S K,Shin H S.Effect of substrate concentrationon hydrogen production and 16S rDNA-based analysis of themicrobial community in a continuous fermenter[J].ProcessBiochemistry,2006,41(1):199.
    [9]Shin H S,Arooj M F,Han S K,et al.Continuous biohydrogenproduction in a CSTR using starch as a substrate[J].International Journal of Hydrogen Energy,2008,33(13):3289.
    [10]Saraphirom P,Reungsang A.Biological hydrogen productionfrom sweet sorghum syrup by mixed cultures using ananaerobic sequencing batch reactor(ASBR)[J].InternationalJournal of Hydrogen Energy,2011,36(14):8765.
    [11]Chang J S,Lee K S,Lin P J.Biohydrogen production withfixed-bed bioreactors[J].International Journal of HydrogenEnergy,2002,27(11/12):1167.
    [12]WU S Y,HUNG C H,LIN C Y,et al.HRT-dependenthydrogen production and bacterial community structure ofmixed anaerobic microflora in suspended,granular andimmobilized sludge systems using glucose as the carbonsubstrate[J].International Journal of Hydrogen Energy,2008,33(5):1542.
    [13]Lin C N,Wu S Y,Chang J S,et al.Biohydrogen production ina three-phase fluidized bed bioreactor using sewage sludgeimmobilized by ethylene-vinyl acetate copolymer[J].Bioresource Technology,2009,100(13):3298.
    [14]Luo G,Xie L,Zou Z H,et al.Fermentative hydrogenproduction from cassava stillage by mixed anaerobic microflora:Effects of temperature and pH[J].Applied Energy,2010,87(12):3710.
    [15]Wu S Y,Huang C H,Lin C N,et al.Fermentative hydrogenproduction and bacterial community structure in high-rateanaerobic bioreactors containing silicone-immobilized and self-flocculated sludge[J].Biotechnology and Bioengineering,2006,93(5):934.
    [16]Van Ginkel S W,Logan B.Increased biological hydrogenproduction with reduced organic loading[J].Water Research,2005,39(16):3819.
    [17]Kyazze G,Martinez-perez N,Dinsdale R,et al.Influence ofsubstrate concentration on the stability and yield of continuousbiohydrogen production[J].Biotechnology andBioengineering,2006,93(5):971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700