Dopant atoms as quantum components in silicon nanoscale devices
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dopant atoms as quantum components in silicon nanoscale devices
  • 作者:Xiaosong ; Zhao ; Weihua ; Han ; Hao ; Wang ; Liuhong ; Ma ; Xiaoming ; Li ; Wang ; Zhang ; Wei ; Yan ; Fuhua ; Yang
  • 英文作者:Xiaosong Zhao;Weihua Han;Hao Wang;Liuhong Ma;Xiaoming Li;Wang Zhang;Wei Yan;Fuhua Yang;Engineering Research Center for Semiconductor Integrated Technology,Beijing Engineering Center of Semiconductor MicroNano Integrated Technology,Institute of Semiconductors,Chinese Academy of Sciences;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences;State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences;
  • 英文关键词:silicon nanoscale devices;;dopant atoms;;ionization energy;;dopant-induced quantum dots;;quantum transport
  • 中文刊名:BDTX
  • 英文刊名:半导体学报(英文版)
  • 机构:Engineering Research Center for Semiconductor Integrated Technology,Beijing Engineering Center of Semiconductor MicroNano Integrated Technology,Institute of Semiconductors,Chinese Academy of Sciences;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences;State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences;
  • 出版日期:2018-06-13
  • 出版单位:Journal of Semiconductors
  • 年:2018
  • 期:v.39
  • 基金:Project supported by National Key R&D Program of China(No.2016YFA0200503)
  • 语种:英文;
  • 页:BDTX201806004
  • 页数:8
  • CN:06
  • ISSN:11-5781/TN
  • 分类号:47-54
摘要
Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics.
        Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics.
引文
[1]Tanaka T,Usuki T,Futatsugi T,et al.Vth fluctuation induced by statistical variation of pocket dopant profile.International Electron Devices Meeting,2000:271
    [2]Sano N,Tomizawa M.Random dopant model for three-dimensional drift-diffusion simulations in metal-oxide-semiconductor field-effect-transistors.Appl Phys Lett,2001,79:2267
    [3]Li Y,Yu S M,Hwang J R,et al.Discrete dopant fluctuations in20-nm/15-nm-gate planar CMOS.IEEE Trans Electron Devices,2008,55:1449
    [4]Shinada T,Okamoto S,Kobayashi T,et al.Enhancing semiconductor device performance using ordered dopant arrays.Nature,2005,437:1128
    [5]Han W H,Wang Z M.Toward quantum Fin FET.Berlin:Springer,2013
    [6]Fujiwara A,Inokawa H,Yamazaki K,et al.Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor.Appl Phys Lett,2006,88:053121
    [7]Fuechsle M,Miwa J A,Mahapatra S,et al.A single-atom transistor.Nat Nanotechnol,2012,7:242
    [8]Moraru D,Udhiarto A,Anwar M,et al.Atom devices based on single dopants in silicon nanostructures.Nanoscale Res Lett,2011,6:479
    [9]Lansbergen G P,Rahman R,Wellard C J,et al.Gate-induced quantum-confinement transition of a single dopant atom in a silicon Fin FET.Nat Phys,2008,4:656
    [10]Kane B E.A silicon-based nuclear spin quantum computer.Nature,1998,393:133
    [11]Vrijen R,Yablonovitch E,Wang K,et al.Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures.Phys Rev A,2000,62:012306
    [12]Kuljanishvili I,Kayis C,Harrison J F,et al.Scanning-probe spectroscopy of semiconductor donor molecules.Nat Phys,2008,4:227
    [13]Gasseller M,De Ninno M,Loo R,et al.Single-electron capacitance spectroscopy of individual dopants in silicon.Nano Lett,2011,11:5208
    [14]Schofield S R,Curson N J,Simmons M Y,et al.Atomically precise placement of single dopants in Si.Phys Rev Lett,2003,91:136104
    [15]Sellier H,Lansbergen G P,Caro J,et al.Transport spectroscopy of a single dopant in a gated silicon nanowire.Phys Rev Lett,2006,97:206805
    [16]Escott C C,Zwanenburg F A,Morello A.Resonant tunneling features in quantum dots.Nanotechnology,2010,21:274018
    [17]Matsukawa T,Fukai T,Suzuki S,et al.Development of singleion implantation-controllability of implanted ion number.Appl Surf Scie,1997,117:677
    [18]Persaud A,Allen F I,Gicquel F,et al.Single ion implantation with scanning probe alignment.J Vac Sci Technol B,2004,22:2992
    [19]Persaud A,Ivanova K,Sarov Y,et al.Micromachined piezoresistive proximal probe with integrated bimorph actuator for aligned single ion implantation.J Vac Sci Technol B,2006,24:3148
    [20]Han W H,Wang H,Yang X,et al.Transport through dopant atom arrays in silicon junctionless nanowire transistor.12th IEEE International Conference on Solid-State and Integrated Circuit Technology(ICSICT),2014:1
    [21]Mott N F.Metal-insulator transition.Rev Modern Phys,1968,40:677
    [22]Bose D N,Seishu B,Parthasarathy G,et al.Doping dependence of semiconductor-metal transition in In P at high pressures.Proceedings of the Royal Society of London.A.Mathematical and Physical Sciences,1986,405:345
    [23]Altermatt P P,Schenk A,Heiser G.A simulation model for the density of states and for incomplete ionization in crystalline silicon.I.Establishing the model in Si:P.J Appl Phys,2006,100:113714
    [24]Varshni Y P,Khanna S M.Effect of dielectric screening on the donor binding energy in silicon and germanium.Phys Rev B,1991,43:9279
    [25]Li X M,Han W H,Wang H,et al.Low-temperature electron mobility in heavily n-doped junctionless nanowire transistor.Appl Phys Lett,2013,102:223507
    [26]Deleure C,Lannoo M.Nanostructures:theory and modelling.Berlin:Springer Verlag,2004
    [27]Niquet Y M,Lherbier A,Quang N H,et al.Electronic structure of semiconductor nanowires.Phys Rev B,2006,73:165319
    [28]Pereira R N,Stegner A R,Andlauer T,et al.Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance.Phys Rev B,2009,79:161304
    [29]Diarra M,Niquet Y M,Delerue C,et al.Ionization energy of donor and acceptor impurities in semiconductor nanowires:importance of dielectric confinement.Phys Rev B,2007,75:045301
    [30]Pierre M,Wacquez R,Jehl X,et al.Single-donor ionization energies in a nanoscale CMOS channel.Nat Nanotechnol,2010,5:133
    [31]Jehl X,Niquet Y M,Sanquer M.Single donor electronics and quantum functionalities with advanced CMOS technology.JPhys:Conden Matter,2016,28:103001
    [32]Kasfner M A.Artificial atoms.Phys Today,1993,46:24
    [33]Ashoori R C.Electrons in artificial atoms.Nature,1996,379:413
    [34]J?ger N D,Urban K,Weber E R,et al.Nanoscale dopant-induced dots and potential fluctuations in Ga As.Appl Phys Lett,2003,82:2700
    [35]Anwar M,Nowak R,Moraru D,et al.Effect of electron injection into phosphorus donors in silicon-on-insulator channel observed by Kelvin probe force microscopy.Appl Phys Lett,2011,99:213101
    [36]Waugh F R,Berry M J,Mar D J,et al.Single-electron charging in double and triple quantum dots with tunable coupling.Phys Rev Lett,1995,75:705
    [37]Tabe M,Moraru D,Ligowski M,et al.Single-electron transport through single dopants in a dopant-rich environment.Phys Rev Lett,2010,105:016803
    [38]Tan K Y,Chan K W,Mottonen M,et al.Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor.Nano Lett,2010,10:11
    [39]Rahman R,Lansbergen G P,Verduijn J,et al.Electric field reduced charging energies and two-electron bound excited states of single donors in silicon.Phys Rev B,2011,84:115428
    [40]Verduijn J,Tettamanzi G C,Rogge S.Wave function control over a single donor atom.Nano Lett,2013,13:1476
    [41]Ruess F J,Pok W,Goh K E J,et al.Electronic properties of atomically abrupt tunnel junctions in silicon.Phys Rev B,2007,75:121303
    [42]Wang H,Han W H,Ma L H,et al.Quantum transport characteristics in single and multiple N-channel junctionless nanowire transistors at low temperatures.Chin Phys B,2014,23:088107
    [43]Wang H,Han W H,Ma L H,et al.Current-voltage spectroscopy of dopant-induced quantum-dots in heavily n-doped junctionless nanowire transistors.Appl Phys Lett,2014,104:133509
    [44]Ma L H,Han W H,Wang H,et al.Electron transport behaviors through donor-induced quantum dot array in heavily ndoped junctionless nanowire transistors.J Appl Phys,2015,117:034505
    [45]Schenk A,Altermatt P P,Schmithusen B.Physical model of incomplete ionization for silicon device simulation.2006 International Conference on Simulation of Semiconductor Processes and Devices,2006:51
    [46]Chen G,Klimeck G,Datta S,et al.Resonant tunneling through quantum-dot arrays.Phys Rev B,1994,50:8035
    [47]Krzysztof T,Daniel M,Arup S,et al.Effect of selective doping on the spatial dispersion of donor-induced quantum dots in Si nanoscale transistors.Appl Phys Express,2015,8:094202
    [48]Samanta A,Muruganathan M,Hori M,et al.Single-electron quantization at room temperature in a-few-donor quantum dot in silicon nano-transistors.Appl Phys Lett,2017,110:093107
    [49]Yi K S,Trivedi K,Floresca H C,et al.Room-temperature quantum confinement effects in transport properties of ultrathin Si nanowire field-effect transistors.Nano Lett,2011,11:5465
    [50]Li Z Z.Theory of solids.Shanghai:Higher Education Press,2002
    [51]Yu D,Wang C,Wehrenberg B L,et al.Variable range hopping conduction in semiconductor nanocrystal solids.Phys Rev Lett,2004,92:216802
    [52]Mott N,Pepper M,Pollitt S,et al.,The Anderson transition.Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1975:169
    [53]Pollitt S,Pepper M,Adkins C J.The Anderson transition in Silicon inversion layers.Surf Sci,1976,58:79
    [54]Prati E,Hori M,Guagliardo F,et al.Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor.Nat Nanotechnol,2012,7:443
    [55]Hiramoto T,Ishikuro H,Fujii T,et al.Room temperature Coulomb blockade and low temperature hopping transport in a multiple-dot-channel metal-oxide-semiconductor field-effecttransistor.Jpn J Appl Phys,1997,36:4139
    [56]Efros A L,Shklovskii B I.Coulomb gap and low temperature conductivity of disordered systems.J Phys C,1975,8:L49
    [57]Wang H,Han W H,Li X M,et al.Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor.J Appl Phys,2014,116:124505
    [58]Wang H,Han W H,Zhao X S,et al.Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor.Chin Phys B,2016,25:108102
    [59]Colinge J P,Lee C W,Afzalian A,et al.Nanowire transistors without junctions.Nat Nanotechnol,2010,5:225
    [60]Colinge J,Kranti A,Yan R,et al.Junctionless nanowire transistor(JNT):properties and design guidelines.Solid-State Electron,2011,65:33
    [61]Colinge J P,Lee C W,Akhavan N D,et al.Junctionless transistors:physics and properties.In:Semiconductor-on-insulator materials for nanoelectronics applications.Berlin:Springer,2011:87
    [62]Lee C W,Ferain I,Afzalian A,et al.Performance estimation of junctionless multigate transistors.Solid-State Electron,2010,54:97
    [63]Nazarov A N,Rudenko T E.Nanowire junctionless silicon-oninsulator MOSFETs:operation features and electrical characterization.2015 International Semiconductor Conference,2015:27
    [64]Rudenko T,Barraud S,Georgiev Y M,et al.Electrical characterization and parameter extraction of junctionless nanowire transistors.J Nano Res,2016,39:17
    [65]Ma D D D,Lee C S,Au F C K,et al.Small-diameter silicon nanowire surfaces.Science,2003,299:1874
    [66]Chuang S,Gao Q,Kapadia R,et al.Ballistic In As nanowire transistors.Nano Lett,2013,13:555
    [67]Raseong K,Lundstrom M S.Characteristic features of 1-D ballistic transport in nanowire MOSFETs.IEEE Trans Nanotechnol,2008,7:787
    [68]Colinge J P,Lee C W,Ferain I,et al.Reduced electric field in junctionless transistors.Appl Phys Lett,2010,96:073510
    [69]Park J T,Kim J Y,Lee C W,et al.Low-temperature conductance oscillations in junctionless nanowire transistors.Appl Phys Lett,2010,97:172101
    [70]Trivedi K,Yuk H,Floresca H C,et al.Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors.Nano Lett,2011,11:1412
    [71]Ma L H,Han W H,Wang H,et al.Observation of degenerate one-dimensional subbands in single n-channel junctionless nanowire transistors.IEEE Electron Device Lett,2015,36:941
    [72]Ma L H,Han W H,Wang H,et al.Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing.Chin Phys B,2016,25:068103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700