振动对家兔骨骼肌线粒体呼吸链酶及ATP酶活力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of the vibration on the activities of mitochondrial respiratory chain enzymes and ATPases in the skeletal muscle of rabbits
  • 作者:解霜雁 ; 林立 ; 邵华
  • 英文作者:XIE Shuangyan;LIN Li;SHAO Hua;School of Medicine and Life Sciences,University of Jinan-Shandong Academy of Medical Sciences;School of Public Health,Jining Medical University;Shandong Academy of Occupational Health and Occupational Medicine,Shandong Academy of Medical Sciences;
  • 关键词:振动 ; 骨骼肌 ; 线粒体呼吸链酶 ; ATP酶 ; 能量代谢
  • 英文关键词:Vibration;;Skeletal muscle;;Mitochondrial respiratory chain enzyme;;ATP enzyme;;Energy metabolism
  • 中文刊名:JNYY
  • 英文刊名:Journal of Jining Medical University
  • 机构:济南大学山东省医学科学院医学与生命科学学院;济宁医学院公共卫生学院;山东省医学科学院山东省职业卫生与职业病防治研究院;
  • 出版日期:2019-02-20
  • 出版单位:济宁医学院学报
  • 年:2019
  • 期:v.42;No.162
  • 基金:国家自然基金项目(81273042)
  • 语种:中文;
  • 页:JNYY201901004
  • 页数:5
  • CN:01
  • ISSN:37-1143/R
  • 分类号:20-23+28
摘要
目的探讨振动对家兔骨骼肌线粒体呼吸链酶及ATP酶活力的影响及其意义。方法将32只家兔随机分为低强度组、中强度组、高强度组3个实验组和1个对照组,每组8只。对家兔进行为期45d的振动负荷试验。试验结束后,取其后肢骨骼肌,进行线粒体呼吸链酶复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ及ATP酶活力的测定。结果对照组、低强度组、中强度组、高强度组骨骼肌组织线粒体呼吸链酶复合体Ⅰ的活力分别是248. 30±40. 43、180. 89±84. 67、172. 01±40. 00、77. 87±52. 72;线粒体呼吸链酶复合体Ⅱ的活力分别是71. 47±5. 25、63. 91±8.09、52. 19±9. 21、28. 62±5. 84;线粒体呼吸链酶复合体Ⅲ的活力分别是31. 85±11. 62、22. 63±8. 84、14. 26±6.66、7. 92±3. 35;线粒体呼吸链酶复合体Ⅳ的活力分别是32. 76±4. 75、12. 56±2. 91、11. 83±1. 77、7. 11±1. 64。与对照组相比,各实验组家兔骨骼肌线粒体呼吸链酶复合体Ⅰ~Ⅳ的活力均明显减弱(P <0. 05)。对照组、低强度组、中强度组、高强度组骨骼肌组织中Na~+-K~+-ATP酶的活力分别是34. 23±4. 20、15. 17±0. 68、16. 16±0.47、11. 56±1. 76; Ca~(2+)-Mg~(2+)-ATP酶的活力分别是12. 17±1. 11、7. 15±1. 19、5. 40±0. 92、4. 90±1. 05。与对照组比较,3个实验组Na~+-K~+-ATP酶、Ca~(2+)-Mg~(2+)-ATP酶活力均明显降低(P <0. 05)。结论振动可导致家兔骨骼肌线粒体呼吸链酶活力降低而引发能量代谢异常,进而可能成为振动性骨骼肌损伤的重要因素。
        Objective To study the effects of vibration on the activities of mitochondrial respiratory chain enzymes and ATPases in the skeletal muscle of rabbits. Methods Thirty-two rabbits were randomly divided into low-intensity group,medium-intensity group,high-intensity group and control group( n = 8). The vibration loading test was carried out on each intensity group. After the test,the activities of mitochondrial respiratory chain enzymes and ATPases in the skeletal muscle of each group were measured. Results The activities of mitochondrial respiratory chain enzyme complex Ⅰ in the skeletal muscle tissue of control group,low-intensity group,medium-intensity group and high-intensity group were 248. 30 ± 40. 43,180. 89 ± 84. 67,172. 01 ±40. 00 and 77. 87 ± 52. 72;The activities of respiratory chain enzyme complex Ⅱ were 71. 47 ± 5. 25,63. 91 ±8. 09,52. 19 ± 9. 21 and 28. 62 ± 5. 84. The activities of respiratory chain enzyme complex Ⅲ were 31. 85 ±11. 62,22. 63 ± 8. 84,14. 26 ± 6. 66 and 7. 92 ± 3. 35. Respiratory chain enzyme complex IV were 32. 76 ± 4. 75,12. 56 ± 2. 91,11. 83 ± 1. 77 and 7. 11 ± 1. 64,respectively. Compared with the control group,the activities of mitochondrial respiratory chain enzyme complexes Ⅰ ~ Ⅳ in skeletal muscle of each intensity group were significantly decreased( P < 0. 05). The activities of Na~+-K~+-ATPase in skeletal muscle tissue of control group,low-intensity group,medium-intensity group and high-intensity group were 34. 23 ± 4. 20,15. 17 ± 0. 68,16. 16 ± 0. 47 and 11. 56 ± 1. 76,and the activities of Ca~(2+)-Mg~(2+)-ATPase were 12. 17 ± 1. 11,7. 15 ± 1. 19,5. 40 ±0. 92 and 4. 90 ± 1. 05,respectively. Compared with the control group,the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase in the three intensity groups were significantly decreased(P < 0. 05). Conclusion The vibration can lead to the decrease of activities of mitochondrial respiratory chain enzymes and abnormal energy metabolism of skeletal muscle in rabbits,which may become an important factor of vibration-induced skeletal musclular injury.
引文
[1]Aarhus L,Stranden E,Nordby KC,et al.Vascular component of hand-arm vibration syndrome:a 22-year followup study[J].Occup Med(Lond),2018,68(6):384-390.DOI:10.1093/occmed/kqy085.
    [2]Campbell RA,Janko MR,Hacker RI.Hand-arm vibration syndrome:a rarely seen diagnosis[J].J Vasc Surg Cases Innov Tech,2017,3(2):60-62.DOI:10.1016/j.jvscit.2017.01.002.eCollection 2017 Jun.
    [3]Charles LE,Ma CC,Burchfiel CM,et al.Vibration and ergonomic exposures associated with musculoskeletal disorders of the shoulder and neck[J].Saf Health Work,2018,9(2):125-132.DOI:10.1016/j.shaw.2017.10.003.
    [4]Handford M,Lepine K,Boccia K,et al.Hand-arm vibration syndrome:workers'experience with functional impairment and disability[J].J Hand Ther,2017,30(4):491-499.DOI:10.1016/j.jht.2016.10.010.
    [5]尚画雨,白胜超,夏志,等.运动诱导骨骼肌损伤对大鼠骨骼肌线粒体结构和功能的影响[J].北京体育大学学报,2018,41(1):58-63.DOI:10.19582/j.cnki.113785/g8.2018.01.008.
    [6]夏舒萌,张德琛,吴小晶,等.线粒体功能与骨骼肌缺血再灌注损伤的关系[J].中国临床康复,2005,9(2):103-105.DOI:10.3321/j.issn:1673-8225.2005.02.079.
    [7]谈文博.适度运动对增龄大鼠骨骼肌线粒体能量代谢及自由基代谢的影响[D].兰州:西北师范大学,2014.
    [8]于秉治.图表生物化学[M].北京:中国协和医科大学出版社,2010:152-158.
    [9]Báez AL,Reynoso MN,Lo Presti MS,et al.Mitochondrial dysfunction in skeletal muscle during experimental chagas disease[J].Exp Mol Pathol,2015,98(3):467-75.DOI:10.1016/j.yexmp.2015.03.034.
    [10]Mun JY,Jung MK,Kim SH,et al.Ultrastructural changes in skeletal muscle of infants with mitochondrial respiratory chain complex I defects[J].J Clin Neurol,2017,13(4):359-365.DOI:10.3988/jcn.2017.13.4.359.
    [11]Belyaeva EA.Respiratory complexⅡin mitochondrial dysfunction-mediated cytotoxicity:Insight from cadmium[J].J Trace Elem Med Biol,2018,50:80-92.DOI:10.1016/j.jtemb.2018.06.009.
    [12]Dodds RM,Davies K,Granic A,et al.Mitochondrial respiratory chain function and content are preserved in the skeletal muscle of active very old men and women[J].Exp Gerontol,2018,113:80-85.DOI:10.1016/j.exger.2018.09.020.
    [13]Juel C.Oxidative stress(glutathionylation)and Na-,KATPase activity in rat skeletal muscle[J].PLoS One,2014,9(10):e110514.DOI:10.1371/journal.pone.0110514.
    [14]Nozdrenko DM,Abramchuk OM,Soroca VM,et al.The effect of the aluminum chloride-quercetin complex on Ca2+-Mg2+-ATP as eactivity and contraction dynamic properties of muscle tibialis anterior from rana temporaria[J].Ukr Biochem J,2015,87(6):76-85.DOI:10.15407/ubj87.06.076.
    [15]Mahbub MH,Kurozawa Y,Ishitake T,et al.A systematic review of diagnostic performance of quantitative tests to assess musculoskeletal disorders in hand-arm vibration syndrome[J].Ind Health,2015,53(5):391-397.DOI:10.2486/indhealth.2014-0221.
    [16]Bovenzi M,Prodi A,Mauro M.A longitudinal study of neck and upper limb musculoskeletal disorders and alternative measures of vibration exposure[J].Int Arch Occup Environ Health,2016,89(6):923-933.DOI:10.1007/s00420-016-1131-9.18
    [17]Di Giminiani R,Fabiani L,Baldini G,et al.Hormonal and neuromuscular responses to mechanical vibration applied to upper extremity muscles[J].PLoS One,2014,9(11):e111521.DOI:10.1371/journal.pone.0111521.
    [18]Hagberg M.Clinical assessment of musculoskeletal disorders in workers exposed to hand-arm vibration[J].Int Arch Occup Environ Health,2002,75(1-2):97-105.DOI:10.1007/s004200100283.
    [19]Kennedy G,Khan F,McLaren M,et al.Endothelial activation and response in patients with hand arm vibration syndrome[J].Eur J Clin Invest,1999,29(7):577-581.DOI:10.1046/j.1365-2362.1999.00502.x.
    [20]郎丽,林瀚生,陈青松,等.周围血5-羟色胺与手传振动接触水平及末梢血管损伤的相关性[J].环境与职檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪业医学,2016,33(6):542-546.DOI:10.13213/j.cnki.jeom.2016.16138.
    [21]林立,张璟,曾晓立,等.后肢接振对家兔缩血管肽类物质的影响[J].毒理学杂志,2006,20(3):165-166.DOI:10.16421/j.cnki.1002-3127.2006.03.012.
    [22]于永胜,林立,张春之,等.局部接触振动家兔血清某些指标变化的实验研究[J].中国职业医学,2007,34(2):110-112,114.DOI:10.3969/j.issn.1000-6486.2007.02.008.
    [23]林立,张兆强,张春芝.后肢接振对家兔后肢骨骼肌组织生化酶活力的影响[J].济宁医学院学报,2016,39(4):234-236.DOI:10.3969/j.issn.1000-9760.2016.04.002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700