藻胆蛋白生物合成研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in biosynthesis of phycobiliprotein
  • 作者:马丞博 ; 秦松 ; 李文军 ; 葛保胜
  • 英文作者:Chenbo Ma;Song Qin;Wenjun Li;Baosheng Ge;Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences;College of Life Sciences, Yantai University;Center for Bioengineering and Biotechnology, China University of Petroleum (East China);
  • 关键词:藻胆蛋白 ; 生物合成 ; 体外重组 ; 抗氧化 ; 荧光
  • 英文关键词:phycobiliprotein;;biosynthesis;;in vitro recombination;;antioxidant;;fluorescent
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国科学院烟台海岸带研究所;烟台大学生命科学学院;中国石油大学(华东)化学工程学院生物工程与技术中心;
  • 出版日期:2019-01-10
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家海洋经济创新发展示范项目(海洋经济发展创新示范城市启动资金)(YHCX-SW-Y-201701);; 国家重点研发计划政府间科技创新合作重点专项(2016YFE0106700)资助
  • 语种:中文;
  • 页:KXTB201901007
  • 页数:11
  • CN:01
  • ISSN:11-1784/N
  • 分类号:55-65
摘要
藻胆蛋白作为藻类特殊的捕光色素蛋白复合体,有着独特的结构和功能.目前藻胆蛋白主要有2个来源:一是直接从天然藻体中分离提取;二是将合成藻胆蛋白的基因转到基因工程宿主中,通过体外重组方法获得.通过从天然藻体提取藻胆蛋白不但生产成本较高,而且副产物较多.通过体外重组来实现藻胆蛋白的生产不仅可以降低经济和时间成本,而且可以对藻胆蛋白的生物合成过程进行研究.此外,通过体外重组获得具有光学活性的藻胆蛋白时,可以添加不同的分子标签,从而拓展藻胆蛋白的应用范围.本文对藻胆蛋白的体内生物合成和体外重组研究的最新进展做了综述.
        Photosynthesis has existed on the earth for about 4 billion years, and the photosynthetic organisms have emerged with the production of photosynthesis. In order to effectively capture light energy and adapt their living environment, algae and higher plants have evolved different light-harvesting antenna systems during the long evolution, one is the chlorophyll based light harvesting systems present mainly in terrestrial organisms, such as higher plants; and the other is the phycobiliprotein(PBP) based phycobilisome system mainly in aquatic organisms, such as cyanobacteria, red algae and cryptophytes. As a special light-harvesting pigment-protein complex, PBP can not only capture light energy, also shows many unique characteristics, such as good fluorescent properties and lots of pharmaceutical activities. Therefore, PBPs have been extensively studied and commercially used in foods, cosmetics, biotechnology detection, pharmacological and medicine fields. Due to its broad excitation spectrum, nontoxic, stable fluorescence and high quantum yield, PBPs have also employed as valuable fluorescent probes for immunological diagnosis. At present, there are mainly two ways to obtain fluorescent PBPs, one is to purify PBP directly from natural algae, and the other is to express recombinant PBP using genetic engineered host cells. Purification of PBPs from natural algae has many disadvantages, such as higher cost, complicated processes, and many by-products. Using genetically engineered cell biotechnology, large-scale and low-cost production of recombinant PBPs can be achieved, which can help solve problems such as source, quality control and so on. Since natural PBPs are mostly in the form of polymers such as trimers or hexamers, it is difficult to study the assembly process. Through genetic engineering techniques, monomers or subunits can be obtained, which will help to study the assembly process of PBP. In addition, novel recombinant PBPs can be produced by molecular design to improve their fluorescence and biological activity. The study of the biosynthesis will help to elucidate the relationship between the structure and spectral properties of PBPs and provide a basis for the construction of solar energy utilization systems. This review mainly focuses on the progress of combinational biosynthesis and in vivo reorganization of PBP in heterologous genetically engineered host cells, with emphasis on different genes coding for apo-PBPs and genes coding for different enzymes which catalyze the production of phycobilins from endogenous heme, along with the recent progress of three types of lyases which catalyze the covalently binding of phycobilins with apo-PBPs. The possible applications of these valuable recombinant PBPs were proposed as well.
引文
1Lockhart P J, Larkum A W, Steel M, et al. Evolution of chlorophyll and bacteriochlorophyll:The problem of invariant sites in sequence analysis. Proc Natl Acad Sci USA, 1996, 93:1930–1934
    2 Adir N. Elucidation of the molecular structures of components of the phycobilisome:Reconstructing a giant. Photosynth Res, 2005, 85:15–32
    3 Gantt E, Conti S F. The ultrastructure of porphyridium cruentum. J Cell Biol, 1965, 26:365
    4 Gantt E, Conti S F. Phycobiliprotein localization in algae. Brookhaven Symp Biol, 1966, 19:393
    5 Ducret A, Müller S A, Goldie K N, et al. Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol, 1998, 278:369
    6 Li W J,PuY,Niu Z,etal.Structural andfunctionalinvestigation ofallophycocyanin trimer(in Chinese). BullSciTechnol, 2017, 62:1699–1713[李文军,蒲洋,牛壮,等.重组别藻蓝蛋白三聚体结构与功能.科学通报, 2017, 62:1699–1713] 7Zhang J, Ma J, Liu D, et al. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature, 2017, 551:57
    8 ChenY.Studiesoncyanobacteriochromesandthebiosynthesisofphycoerythrin(inChinese).DoctorDissertation.Wuhan:Huazhong UniversityofScienceandTechnology,2012[陈煜.蓝细菌光敏色素及藻红蛋白的生物合成研究.博士学位论文.武汉:华中科技大学, 2012]
    9 Lundell D J, Glazer A N. Allophycocyanin B. A common beta subunit in Synechococcus allophycocyanin B(lambda max 670 nm)and allophycocyanin(lambda max 650 nm). J Biol Chem, 1981, 256:12600
    10 Maccoll R. Cyanobacterial phycobilisomes. J Struct Biol, 1998, 124:311
    11 Yi J J, Zang X N, Zhang X C, et al. Recombinant expression of a fluorescent phycocyanin holo-α-subunit from Arthrospira platensis in Escherichia coli(in Chinese). Period Ocean Univ China, 2011, 41:59–62[衣俊杰,臧晓南,张学成,等.具荧光活性的节旋藻藻蓝蛋白α亚基在大肠杆菌中的重组表达.中国海洋大学学报, 2011, 41:59–62]
    12 Liu X. The research of gene sll0853 from Synechocystis sp. PCC 6803(in Chinese). Master Thesis. Wuhan:South-Central University for Nationalities, 2012[刘欣.集胞藻pcc6803基因sll0853的初步研究.硕士学位论文.武汉:中南民族大学, 2012]
    13 Chen M, Yang D L, Li X W. Characteristics and existential states of novel phycobilipro-teins in cryptophyte algae(in Chinese). Mar Sci,2017, 41:128–136[陈敏,杨多利,李雪薇.特异的隐藻藻胆蛋白的性质及存在状态.海洋科学, 2017, 41:128–136]
    14 LiWJ.Preparationofnewtypeofphycobiliproteinsandapplicationinbiosensorsanddye-sensitizedsolarcells(inChinese).Doctor Dissertation. Yantai:Yantai Institute of Coastal Zone Reseach, Chinese Academy of Sciences, 2017[李文军.新型藻胆蛋白的制备及其在生物传感和染料敏化太阳能电池中的应用.博士学位论文.烟台:中国科学院烟台海岸带研究所, 2017]
    15 Tu S L, Rockwell N C, Lagarias J C, et al. Insight into the radical mechanism of phycocyanobilin-ferredoxin oxidoreductase(pcya)revealed by X-ray crystallography and biochemical measurements. Biochemistry, 2007, 46:1484
    16 TuS,ChenH,KuL.MechanisticstudiesofthephytochromobilinsynthaseHY2fromArabidopsis.JBiolChem,2008,283:27555–27564
    17 Okada K. Ho1 and pcya proteins involved in phycobilin biosynthesis form a 1:2 complex with ferredoxin-1 required for photosynthesis.Febs Lett, 2009, 583:1251
    18 Wu X J, Deng M G, Zhao K H, et al. Covalent attachment of various phycobilins to recombinant cyanobacteria phycocyanin RpcA(in Chinese). J Huazhong Normal Univ(Nat Sci), 2012, 46:606–610[伍贤军,邓明刚,赵开弘,等.重组蓝细菌藻蓝蛋白rpca共价偶联多种藻胆色素.华中师范大学学报(自然科学版), 2012, 46:606–610]
    19 Six C, Thomas J C, Thion L, et al. Two novel phycoerythrin-associated linker proteins in the marine cyanobacterium Synechococcus sp.Strain wh8102. J Bacteriol, 2005, 187:1685–1694
    20 SixC,ThomasJC,GarczarekL,etal.DiversityandevolutionofphycobilisomesinmarineSynechococcusspp.:Acomparativegenomics study. Genome Biol, 2007, 8:R259
    21 Blot N, Wu X J, Thomas J C, et al. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J Biol Chem, 2009, 284:9290–9298
    22 Wu X J. Studies on biosynthesis and application of biliproteins of cyanobacteria(in Chinese). Doctor Dissertation. Wuhan:Huazhong University of Science and Technology, 2013[伍贤军.蓝藻色素蛋白的生物合成及应用研究.博士学位论文.武汉:华中科技大学, 2013]
    23 MaJF,LinHZ,QinS.Advancesincyanobacterialphycobilisomeassemblinginvitro(inChinese).SciSinVitae,2016,46:1054–1061[马建飞,林瀚智,秦松.蓝藻藻胆体的体外组装研究进展.中国科学:生命科学, 2016, 46:1054–1061]
    24 ZhouJ,GasparichGE,StirewaltVL,etal.ThecpceandcpcfgenesofSynechococcussp.PCC7002.Constructionandphenotypic characterization of interposon mutants. J Biol Chem, 1992, 267:16138–16145
    25 Fairchild C D, Zhao J, Zhou J, et al. Phycocyanin alpha-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA, 1992, 89:7017–7021
    26 Zhao KH, Wu D, Wang L, etal.Characterizationof phycoviolobilin phycoerythrocyanin-α84-cystein-lyase-(isomerizing)fromMastigocladus laminosus. Febs J, 2010, 269:4542–4550
    27 LiuQZ.CombinationalbiosynthesisofafluorscentcyanobacterialallophycocyaninthimerinE.coli(inChinese).MasterThesis.Qingdao:QingdaoUniversityofScienceandTechnology,2013[刘秋子.荧光别藻蓝蛋白在大肠杆菌内的生物合成与组装.硕士学位论文.青岛:青岛科技大学, 2013]
    28 Liu S F. Biosynthesis and assembly of cyanobacterial phycocyanin(in Chinese). Doctor Dissertation. Qingdao:Institute of Oceanology,Chinese Academy of Sciences, 2010[刘少芳.蓝藻别藻蓝蛋白的生物合成及组装的研究.博士学位论文.青岛:中国科学院海洋研究所, 2010]
    29 Cobley J G, Clark A C, Weerasurya S, et al. Cper is an activator required for expression of the phycoerythrin operon(cpeba)in the cyanobacterium fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon(cpecdestr). Mol Microbiol, 2002, 44:1517–1531
    30 Shen G, Schluchter W M, Bryant D A. Biogenesis of phycobiliproteins:i. Cpcs-i and cpcu mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem,2008, 283:7503–7512
    31 Shen G, Saunée N A, Williams S R, et al. Identification and characterization of a new class of bilin lyase. J Biol Chem, 2006, 281:17768–17778
    32 ZhaoKH,SuP,TuJM,etal.Phycobilin:Cystein-84biliproteinlyase,anear-universallyaseforcysteine-84-bindingsitesincyanobacterial phycobiliproteins. Proc Natl Acad Sci USA, 2007, 104:14300–14305
    33 ZhangJ,SunYF,ZhaoKH,etal.IdentificationofaminoacidresiduesessentialtotheactivityoflyaseCpcT1fromNostocsp.PCC7120. Gene, 2012, 511:88–95
    34 GeBS,LiY,SunH,etal.Combinationalbiosynthesisofphycocyanobilinusinggenetically-engineeredEscherichiacoli.Biotechnol Lett, 2013, 35:689–693
    35 Ge B S, Chen Y, Yu Q, et al. Regulation of the heme biosynthetic pathway for combinational biosynthesis of phycocyanobilin in Escherichia coli. Process Biochem, 2018, 71:23–30
    36 Stiefelmaier J, Ledermann B, Sorg M, et al. Pink bacteria—Production of the pink chromophore phycoerythrobilin with Escherichia coli.J Biotechnol, 2018, 274:47
    37 Bryant D A, Lorimier R D, Lambert D H, et al. Molecular cloning and nucleotide sequence of theαandβsubunits of allophycocyanin from the cyanelle genome of cyanophora paradoxa. Proc Natl Acad Sci USA, 1985, 82:3242
    38 Chen Y J. Exploration on the research of adsorbent and carrier for holo-phycobiliprotein(in Chinese). Doctor Dissertation. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2011[陈英杰.基于磁性纳米颗粒的荧光藻胆蛋白制备分离及载负应用研究探索.博士学位论文.青岛:中国科学院海洋研究所, 2011]
    39 Sun Y X. Experimental study on the therapeutic effect of phcocyanin again plumonary pibrosis induced by paraquat in rats(in Chinese).Doctor Dissertation. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2012[孙英新.螺旋藻藻蓝蛋白抗百草枯诱导大鼠肺纤维化的研究.博士学位论文.青岛:中国科学院海洋研究所, 2012]
    40 Qin S,Kojima H, KawataY,et al. Cloningand sequencing ofthe allophycocyanin genesfrom Spirulina maxima(cyanophyta). Chin J Oceanol Limnol, 1998, 16:6–11
    41 LinF.Anewrecombinantallphycocyaninandprinarystudyofitsbioactivities(inChinese).MasterThesis.Qingdao:Instituteof Oceanology,ChineseAcademyofSciences,2004[林凡.一种新型重组别藻蓝蛋白及其活性的初步研究.硕士学位论文.青岛:中国科学院海洋研究所, 2004]
    42 Qin S, Tang Z, Lin F, et al. Genomic cloning, expression and recombinant protein purification ofαandβsubunits of the allophycocyanin gene(apc)from the cyanobacterium anacystis nidulans utex 625. J Appl Phycol, 2004, 16:483–487
    43 RenYH,GeBS,JinHZ,etal.EffectoflanthanumonexpressionofrecombinantallophycocyaningeneinPichiapastoris.JRare Earths, 2005, 23:491–495
    44 Sui Z H, Zhang X C. Cloning of subunit genes of phycoerythrin of Gracilaria lemaneiformis and its expression in E. coli(in Chinese).ChinHighTechnolLett,2001,11:14–19[隋正红,张学成.龙须菜藻红蛋白亚基基因的克隆及其在大肠杆菌中的表达.高技术通讯, 2001, 11:14–19]
    45 Wen R, Sui Z, Zhang X, et al. Expression of the phycoerythrin gene of Gracilaria lemaneiformis(rhodophyta)in E. coli and evaluation of the bioactivity of recombinant PE. J Ocean Univ China, 2007, 6:373–377
    46 Yu P, Cen P L, Li J R, et al. Expression of the phycocyanin gene from Spirulina maxima in Pichia pastoris X-33(in Chinese). Bull Sci Technol, 2004, 20:21–23[于平,岑沛霖,励建荣,等.极大螺旋藻藻蓝蛋白基因在巴斯德毕赤酵母X-33中表达的研究.科技通报,2004, 20:21–23]
    47 Tooley A J, Cai Y A, Glazer A N. Biosynthesis of a fluorescent cyanobacterial c-phycocyanin holo-alpha subunit in a heterologous host.Proc Natl Acad Sci USA, 2001, 98:10560–10565
    48 ChenF,ZhouM,ZhaoY,etal.Biosynthesisofafluorescentcyanobacterialc-phycocyaninholo-alphasubunitinEscherichiacoli.J Wuhan Botanical Res, 2006, 24:387–391
    49 Guan X, Qin S, Su Z, et al. Combinational biosynthesis of a fluorescent cyanobacterial holo-α-phycocyanin in Escherichia coli by using one expression vector. Appl Biochem Biotechnol, 2007, 142:52–59
    50 Liu S, Chen H, Qin S, et al. Highly soluble and stable recombinant holo-phycocyanin alpha subunit expressed in Escherichia coli. Biochem Eng J, 2009, 48:58–64
    51 Ge B S, Lin X, Chen Y, et al. Combinational biosynthesis of dual-functional streptavidin-phycobiliproteins for high-throughput-compatible immunoassay. Process Biochem, 2017, 58:306–312
    52 Zhao K H, Zhang J, Tu J M, et al. Lyase activities of cpcs-and cpct-like proteins from Nostoc pcc7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin beta-subunits. J Biol Chem, 2007, 282:34093–34103
    53 MillerCA,LeonardHS,PinskyIG,etal.Biogenesisofphycobiliproteins.III.CpcMistheasparaginemethyltransferasefor phycobiliprotein beta-subunits in cyanobacteria. J Biol Chem, 2008, 283:19293 54Chen Q, Chen S, Song Q, et al. Molecular characterization of a novel gene from Synechocystis sp. PCC 6803. Gene, 2011, 488:57–61
    55 SongGXZW.Combinationalbiosynthesisandcharacterizationofafluorescent82β-phycocyaninofSpirulinaplatensis.2012,57:3294–3299
    56 Kahn K, Mazel D, Houmard J, et al. A role for cpeyz in cyanobacterial phycoerythrin biosynthesis. J Bacteriol, 1997, 179:998–1006
    57 IsailovicD,SultanaI,PhillipsGJ,etal.Formationoffluorescentproteinsbytheattachmentofphycoerythrobilintor-phycoerythrin alpha and beta apo-subunits. Anal Biochem, 2006, 358:38–50
    58 Zhao K, Deng M, Zheng M, et al. Novel activity of a phycobiliprotein lyase:Both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins pece and pecf encoded by the phycoerythrocyanin operon. FEBS Lett, 2000, 469:9–13
    59 Storf M, Parbel A, Meyer M, et al. Chromophore attachment to biliproteins:Specificity of pece/pecf, a lyase-isomerase for the photoactive 31-cys-α84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry, 2001, 40:12444–12456
    60 Tooley A J, Glazer A N. Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-αsubunit in a heterologous host. J Bacteriol, 2002, 184:4666
    61 Hu I, Lee T, Lin H, et al. Biosynthesis of fluorescent allophycocyaninα-subunits by autocatalytic bilin attachment. Biochemistry, 2006,45 :7092–7099
    62 Zhang W, Guan X, Yang Y, et al. Biosynthesis of fluorescent allophycocyaninα-subunits by autocatalysis in Escherichia coli. Biotechnol Appl Biochem, 2009, 52:135
    63 Yang Y, Ge B S, Guan X, et al. Combinational biosynthesis of a fluorescent cyanobacterial holo-α-allophycocyanin in Escherichia coli.Biotechnol Lett, 2008, 30:1001–1004
    64 Zhu J. Biosynthesis of allophycocyanin apca_2 in vivo. J Huazhong Univ Sci Technol, 2009, 37:128–132
    65 Wu J, Chen H, Zhao J, et al. Fusion proteins of streptavidin and allophycocyanin alpha subunit for immunofluorescence assay. Biochem Eng J, 2017, 125:97–103
    66 Chen H, Liu Q, Zhao J, et al. Biosynthesis, spectral properties and thermostability of cyanobacterial allophycocyanin holo-αsubunits. Int J Biol Macromol, 2016, 88:88–92
    67 Ge B S, Sun H, Feng Y, et al. Functional biosynthesis of an allophycocyan beta subunit in Escherichia coli. J Biosci Bioeng, 2009, 107:246–249
    68 Chen H, Lin H, Li F, et al. Biosynthesis of a stable allophycocyanin beta subunit in metabolically engineered Escherichia coli. J Biosci Bioeng, 2013, 115:485–489
    69 Liu S, Chen Y, Lu Y, et al. Biosynthesis of fluorescent cyanobacterial allophycocyanin trimer in Escherichia coli. Photosynth Res, 2010,105 :135–142
    70 Ge B S, Qin S, Han L, et al. Antioxidant properties of recombinant allophycocyanin expressed in Escherichia coli. J Photochem Photobiol B, 2006, 84:175–180
    71 HanL.Theantioxidantactivitiesofsixrecombinantallophycocyanins(inChinese).MasterThesis.Qingdao:InstituteofOceanology,ChineseAcademyofSciences,2006[韩璐.六种重组别藻蓝蛋白的抗氧化活性研究.硕士学位论文.青岛:中国科学院海洋研究所, 2006]
    72 WangH, LiuY,GaoX,etal.The recombinant beta subunit ofc-phycocyanininhibits cell proliferation andinducesapoptosis. Cancer Lett, 2007, 247:150–158
    73 PleonsilP,SoogarunS,SuwanwongY.Anti-oxidantactivityofholo-andapo-c-phycocyaninandtheirprotectiveeffectsonhuman erythrocytes. Int J Biol Macromol, 2013, 60:393–398
    74 Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263:802–805
    75 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353:737–740
    76 Pu Y, Zhu G L, Ge B S, et al. Photocurrent generation by recombinant allophycocyanin trimer multilayer on TiO2 electrode. Chin Chem Lett, 2013, 24:163–166
    77 Medintz I L, Goldman E R, Lassman M E, et al. A fluorescence resonance energy transfer sensor based on maltose binding protein. Bioconjug Chem, 2003, 14:909–918
    78 PovarovaOI,StepanenkoOV,SulatskayaAI,etal.Highstabilityoftrehalose/maltosebindingproteinfromThermococcuslitoralis makes it a good candidate as a sensitive element in biosensor systems for sugar control. Spectroscopy, 2012, 24:1–12
    79 FoninA V, Povarova OI,Staiano M, et al.Thetrehalose/maltose-binding protein as the sensitiveelement of a glucosebiosensor.Opt Mater, 2014, 36:1676–1679

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700