多尺度复合材料力学研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in Multi-scale Mechanics of Composite Materials
  • 作者:陈玉丽 ; 马勇 ; 潘飞 ; 王升涛
  • 英文作者:Yuli Chen;Yong Ma;Fei Pan;Shengtao Wang;Institute of Solid Mechanics,Beihang University;
  • 关键词:多尺度 ; 复合材料 ; 非均质材料 ; 微纳米力学 ; 细观力学
  • 英文关键词:multi-scale;;composite materials;;inhomogeneous materials;;micro and nanomechanics;;mesomechanics
  • 中文刊名:GTLX
  • 英文刊名:Chinese Journal of Solid Mechanics
  • 机构:北京航空航天大学固体力学研究所;
  • 出版日期:2017-12-08 09:09
  • 出版单位:固体力学学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(11202012,11472027和11622214)资助
  • 语种:中文;
  • 页:GTLX201801001
  • 页数:68
  • CN:01
  • ISSN:42-1250/O3
  • 分类号:4-71
摘要
多尺度复合材料力学是运用多尺度分析思想研究空间分布非均匀材料力学性能的学科.近年来,多组分、多层级先进材料的蓬勃发展和微纳米实验观测手段的不断进步,有力地推动了该学科的研究.论文围绕非均匀材料力学性能的多尺度分析,首先从微纳米尺度到宏观尺度综述了常用的理论分析方法;接着分别针对非均匀连续介质和离散体系介绍了常用的多尺度计算模拟方法;然后结合本课题组在纳米复合材料、抗冲击吸能材料、随机网络材料和多层级自相似材料等方面的研究工作,举例说明了如何综合运用多种方法对各种复杂材料系统进行多尺度分析;最后,展望了该领域还需进一步发展和完善的若干方向.
        Multi-scale mechanics of composite materials is the subject that studies mechanical properties of inhomogeneous materials by the means of multi-scale analysis.In recent years,significant progress has been achieved in micro-and nano-scale experimental techniques,and many new types of advanced materials with multiple phases and hierarchical structures have been proposed and even produced,which both have greatly promoted the development of multi-scale mechanics of composite materials.In order to present the important approaches and current developments in the multi-scale analysis for mechanical properties of inhomogeneous materials,first,the classical and commonly-used theoretical approaches are reviewed in this paper from nano and micro scales to macro scale;and subsequently,the multi-scale computational methods are introduced for both heterogeneous continuum and discrete systems.In addition,some research examples are presented to show how to use the theoretical and computational multi-scale methods to analyze complex material systems,including the studies of the authors' group in nanocomposite materials,impact-resistant energy absorbing materials,network materials and hierarchical self-similar materials.Finally,some future study directions of multi-scale mechanics for inhomogeneous materials are prospected.
引文
[1]师昌绪.材料大辞典[M].化学工业出版社,1994.(Shi C X.Materials Comprehensive Dictionary[M].Chemical Industry Press,1994.(in Chinese))
    [2]秦庆华,杨庆生.非均匀材料多场耦合行为的宏细观理论[M].北京:高等教育出版社,2006.(Qin Q H,Yang Q S.Macro-micro-theory on Multi-field Coupling Behavior of Heterogeneous Materials[M].Beijing:Higher Education Press,2006.(in Chinese))
    [3]Gooneie A,Schuschnigg S,Holzer C.A review of multiscale computational methods in polymeric materials[J].Polymers,2017,9(1):16.
    [4]张征,刘更,刘天祥,崔俊芝.计算材料科学中桥域多尺度方法的若干进展[J].计算力学学报,2006,23(6):652-658.(Zhang Z,Liu G,Liu T X,Cui J Z.Advances in multi-scale method based on the bridging domain decomposition in computational materials science[J].Chinese Journal of Computational Mechanics,2006,23(6):652-658.(in Chinese))
    [5]张廼龙,郭小明.多尺度模拟与计算研究进展[J].计算力学学报,2011,28(S1):1-5.(Zhang N L,Guo X M.Multiscale modeling and computation:A review[J].Chinese Journal of Computational Mechanics,2011,28(S1):1-5.(in Chinese))
    [6]Peters W H,Ranson W F.Digital imaging techniques in experimental stress analysis[J].Optical Engineering,1982,21(3):213427-213427.
    [7]Gianola D S,Eberl C.Micro-and nanoscale tensile testing of materials[J].JOM,2009,61(3):24.
    [8]P Weihs T,S Hong,C Bravman J,D Nix W.Mechanical deflection of cantilever microbeams:A new technique for testing the mechanical properties of thin films[J].Journal of Materials Research,1988,3(5):931-942.
    [9]Miller B,Muri P,Rebenfeld L.A microbond method for determination of the shear strength of a fiber/resin interface[J].Composites Science and Technology,1987,28(1):17-32.
    [10]Gaur U,Miller B.Microbond method for determination of the shear strength of a fiber/resin interface:Evaluation of experimental parameters[J].Composites Science and Technology,1989,34(1):35-51.
    [11]刘怀喜,张恒,闫耀辰.声发射技术在复合材料中的应用及研究进展[J].纤维复合材料,2002,19(4):50-52.(Liu H X,Zhang H,Yan Y C.Application and study progress of acoustic emission technology in composite material[J].Fiber Composites,2002,19(4):50-52.(in Chinese))
    [12]Zoughi R.Microwave and millimeter wave nondestructive testing:a succinct introduction[J].Research in Nondestructive Evaluation,1995,7(2-3):71-74.
    [13]Shofner F M,Chu Y T,Shofner C K,Townes M G,Baldwin J C,Patelke D B.Apparatus and Methods for Testing Tension-elongation or Cross-sectional Properties of Single Fibers and Multiple Fiber Bundles[P].US,US5203206,1993.
    [14]Yang B,Motz C,Grosinger W,Kammrath W,Dehm G.Tensile behaviour of micro-sized copper wires studied using a novel fibre tensile module[J].International Journal of Materials Research,2008,99(7):716-724.
    [15]李胜利,金泰义.激光测微仪的研制及其最新进展[J].现代科学仪器,1995,4:45-47.(Li S L,Jin TY.Research in laser micrometer and its new developments[J].Modern Scientific Instruments,1995,4:45-47.(in Chinese))
    [16]Pethicai J B,Hutchings R,Oliver W C.Hardness measurement at penetration depths as small as 20nm[J].Philosophical Magazine A,1983,48(4):593-606.
    [17]Huang M,Yan H,Chen C,Song D,Heinz T F,Hone J.Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(18):7304.
    [18]Koenig S P,Boddeti N G,Dunn M L,Bunch J S.Ultrastrong adhesion of graphene membranes[J].Nature Nanotechnology,2011,6(9):543-6.
    [19]谢惠民,郭海明.扫描隧道显微镜纳米云纹法的实验研究[J].光学技术,2003,29(2):000179-182.(Xie H M,Guo H M.Experiment study on nanometer moire method with scanning tunneling microscope[J].Optical Technology,2003,29(2):000179-182.(in Chinese))
    [20]Tsuda T,Ogasawara T,Deng F,Takeda N.Direct measurements of interfacial shear strength of multiwalled carbon nanotube/PEEK composite using a nano-pullout method[J].Composites Science&Technology,2011,71(10):1295-1300.
    [21]沈观林,胡更开,刘彬.复合材料力学[M].清华大学出版社,2013.(Shen G L,Hu G K,Liu B.Mechanics of Composite Materials[M].Tsinghua University Press,2013.(in Chinese))
    [22]Wu J,Hwang K C,Huang Y.An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes[J].Journal of the Mechanics and Physics of Solids,2008,56(1):279-292.
    [23]Chen Y L,Liu B,Wu J,Huang Y,Jiang H,Hwang K C.Mechanics of hydrogen storage in carbon nanotubes[J].Journal of the Mechanics and Physics of Solids,2008,56(11):3224-3241.
    [24]Liu Y,Xu Z,Zheng Q.The interlayer shear effect on graphene multilayer resonators[J].Journal of the Mechanics and Physics of Solids,2011,59(8):1613-1622.
    [25]Xiao J,Jiang H,Khang D Y,Wu J,Huang Y,Rogers J A.Mechanics of buckled carbon nanotubes on elastomeric substrates[J].Journal of Applied Physics,2008,104(3):033543.
    [26]Wang S,Chen Y,Wu J,Yang K,Pan F.A modeindependent energy-based buckling analysis method and its application on substrate-supported graphene[J].International Journal of Solids and Structures,2017,124:73-88.
    [27]Ericksen J L.On the Cauchy-Born rule[J].Mathematics and Mechanics of Solids,2008,13(3-4):199-220.
    [28]Zhang P,Jiang H,Huang Y,Geubelle P H,Hwang K C.An atomistic-based continuum theory for carbon nanotubes:analysis of fracture nucleation[J].Journal of the Mechanics and Physics of Solids,2004,52(5):977-998.
    [29]Huang Y,Wang Z L.Mechanics of nanotubes[J].Comprehensive Structural Integrity,2003,551-579.
    [30]Tadmor E B,Smith G S,Bernstein N,Kaxiras E.Mixed finite element and atomistic formulation for complex crystals[J].Physical Review B,1999,59(1):235-245.
    [31]Zhang P,Huang Y,Geubelle P H,Klein P A,Hwang K C.The elastic modulus of single-wall carbon nanotubes:A continuum analysis incorporating interatomic potentials[J].International Journal of Solids and Structures,2002,39(13):3893-3906.
    [32]Jiang H,Zhang P,Liu B,Huang Y,Geubelle P H,Gao H,Hwang K C.The effect of nanotube radius on the constitutive model for carbon nanotubes[J].Computational Materials Science,2003,28(3):429-442.
    [33]Song J,Wu J,Huang Y,Hwang K C.Continuum modeling of boron nitride nanotubes[J].Nanotechnology,2008,19(44):445705.
    [34]Arroyo M,Belytschko T.An atomistic-based finite deformation membrane for single layer crystalline films[J].Journal of the Mechanics and Physics of Solids,2002,50(9):1941-1977.
    [35]Guo X,Wang J B,Zhang H W.Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy-Born rule[J].International Journal of Solids and Structures,2006,43(5):1276-1290.
    [36]Liu J,Song J,Wei Y.Size effects of elastic modulus of fcc metals based on the Cauchy-Born rule and nanoplate models[J].Acta Mechanica Solida Sinica,2014,27(2):111-121.
    [37]Sun Y,Liew K M.The buckling of single-walled carbon nanotubes upon bending:The higher order gradient continuum and mesh-free method[J].Computer Methods in Applied Mechanics and Engineering,2008,197(33):3001-3013.
    [38]Ansari R,Shahabodini A,Rouhi H.A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression[J].Composite Structures,2013,100:323-331.
    [39]Singh S,Patel B P.Nonlinear dynamic response of single layer graphene sheets using multiscale modelling[J].European Journal of Mechanics-A/Solids,2016,59:165-177.
    [40]Rogula D.Introduction to nonlocal theory of material media,Nonlocal theory of material media[J].Springer,1982,123-222.
    [41]Ba6ant Z P,Jirásek M.Nonlocal integral formulations of plasticity and damage:survey of progress[J].Journal of Engineering Mechanics,2002,128(11):1119-1149.
    [42]Eringen A C.Linear theory of nonlocal elasticity and dispersion of plane waves[J].International Journal of Engineering Science,1972,10(5):425-435.
    [43]姚寅,黄再兴.非局部平面应变和平面应力问题界定及其精确性讨论[J].固体力学学报,2010,31(4):332-338.(Yao Y,Huang Z X.Discussions on the defintion and accuracy of nonlocal plane strain and stress problems[J].Chinese Journal of Solid Mechanics,2010,31(4):332-338.(in Chinese))
    [44]Reddy J N.Nonlocal theories for bending,buckling and vibration of beams[J].International Journal of Engineering Science,2007,45(2):288-307.
    [45]林C W.基于非局部弹性应力场理论的纳米尺度效应研究:纳米梁的平衡条件、控制方程以及静态挠度[J].应用数学和力学,2010,31(1):35-50.(Lim CW.On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory:equilibrium,governing equation and static deflection[J].Applied Mathematics and Mechanics,2010,31(1):35-50.(in Chinese))
    [46]Eringen A C.Nonlocal polar elastic continua[J].International Journal of Engineering Sciencem,1972,10(1):1-16.
    [47]Eringen A C.Theory of nonlocal thermoelasticity[J].International Journal of Engineering Science,1974,12(12):1063-1077.
    [48]Eringen A.Memory dependent nonlocal elastic solids[J].Letters in Applied and Engineering Sciences,1974,2:145-159.
    [49]Atkinson C.On some recent crack tip stress calculations in nonlocal elasticity[J].Archiwum Mechaniki Stosowanej,1980,32(2):317-328.
    [50]Altan S B.Uniqueness of initial-boundary value problems in nonlocal elasticity[J].International Journal of Solids and Structures,1989,25(11):1271-1278.
    [51]Picu R C.On the functional form of non-local elasticity kernels[J].Journal of the Mechanics and Physics of Solids,2002,50(9):1923-1939.
    [52]黄再兴.关于非局部场论的两点注记[J].固体力学学报,1997,02:158-162.(Huang Z X.Two notes on nonlocal field theory[J].Chinese Journal of Solid Mechanics,1997,02:158-162.(in Chinese))
    [53]陈少华,王自强.应变梯度理论进展[J].力学进展,2003,33(2):207-216.(Chen S H,Wang Z Q.Advances in strain gradient theory[J].Advances in Mechanics,2003,33(2):207-216.(in Chinese))
    [54]Zeighampour H,Tadi Beni Y.Cylindrical thin-shell model based on modified strain gradient theory[J].International Journal of Engineering Science,2014,78:27-47.
    [55]Toupin R A.Elastic materials with couple-stresses[J].Archive for Rational Mechanics and Analysis,1962,11(1):385-414.
    [56]Koiter W.Couple stresses in the theory of elasticity[J].Proc.Koninklijke Nederl.Akaad.van Wetensch,1964,67.
    [57]Mindlin R D,Tiersten H F.Effects of couple-stresses in linear elasticity[J].Archive for Rational Mechanics and Analysis,1962,11(1):415-448.
    [58]Mindlin R D.Micro-structure in linear elasticity[J].Archive for Rational Mechanics and Analysis,1964,16(1):51-78.
    [59]Mindlin R D.Second gradient of strain and surfacetension in linear elasticity[J].International Journal of Solids and Structures,1965,1(4):417-438.
    [60]Cosserat E,Cosserat F.Théorie des corps déformables[J],1909.
    [61]Fleck N,Hutchinson J.Strain gradient plasticity[J].Advances in Applied Mechanics,1997,33:296-361.
    [62]Lam D C C,Yang F,Chong A C M,Wang J,Tong P.Experiments and theory in strain gradient elasticity[J].Journal of the Mechanics and Physics of Solids,2003,51(8):1477-1508.
    [63]Aifantis E C.On the role of gradients in the localization of deformation and fracture[J].International Journal of Engineering Science,1992,30(10):1279-1299.
    [64]Aifantis E C.Strain gradient interpretation of size effects[J].International Journal of Fracture,1999,95(1):299.
    [65]赵杰,陈万吉,冀宾.关于两种二阶应变梯度理论[J].力学学报,2010,42(1):138-145.(Zhao J,Chen W J,Ji B.A study on the two second-order strain gradient theory[J].Chinese Journal of Theoretical and Applied Mechanics,2010,42(1):138-145.(in Chinese))
    [66]Fleck N A,Hutchinson J W.A phenomenological theory for strain gradient effects in plasticity[J].Journal of the Mechanics and Physics of Solids,1993,41(12):1825-1857.
    [67]Fleck N A,Muller G M,Ashby M F,Hutchinson JW.Strain gradient plasticity:Theory and experiment[J].Acta Metallurgica et Materialia,1994,42(2):475-487.
    [68]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)---偶应力理论和SG理论[J].机械强度,1999,02:81-87.(Huang K Z,Qiu X M,Jiang H Q.Recent advances in strain gradient plasticity-I--Couple stress theory and SG theory[J].Journal of Mechanical Strength,1999,02:81-87.(in Chinese))
    [69]Nix W D,Gao H.Indentation size effects in crystalline materials:A law for strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1998,46(3):411-425.
    [70]Gao H,Huang Y,Nix W D,Hutchinson J W.Mechanism-based strain gradient plasticity-I.Theory[J].Journal of the Mechanics and Physics of Solids,1999,47(6):1239-1263.
    [71]Huang Y,Gao H,Nix W D,Hutchinson J W.Mechanism-based strain gradient plasticity-II.Analysis[J].Journal of the Mechanics and Physics of Solids,2000,48(1):99-128.
    [72]Lim C W,Zhang G,Reddy J N.A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J].Journal of the Mechanics and Physics of Solids,2015,78:298-313.
    [73]Xia Z C,Hutchinson J W.Crack tip fields in strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1996,44(10):1621-1648.
    [74]Wei Y,Hutchinson J W.Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1997,45(8):1253-1273.
    [75]Shu J Y,Fleck N A.The prediction of a size effect in microindentation[J].International Journal of Solids and Structures,1998,35(13):1363-1383.
    [76]Chen J,Yuan H.A micro-mechanical damage model based on gradient plasticity:algorithms and applications[J].International Journal for Numerical Methods in Engineering,2002,54(3):399-420.
    [77]Pradhan S C.Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory[J].Finite Elements in Analysis and Design,2012,50:8-20.
    [78]Huang Y,Xue Z,Gao H,Nix W,Xia Z.A study of microindentation hardness tests by mechanism-based strain gradient plasticity[J].Journal of Materials Research,2000,15(8):1786-1796.
    [79]Jiang H,Huang Y,Zhuang Z,Hwang K C.Fracture in mechanism-based strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,2001,49(5):979-993.
    [80]Wei Y.Particulate size effects in the particle-reinforced metal-matrix composites[J].Acta Mechanica Sinica,2001,17(1):45.
    [81]Lu P,Lee H P,Lu C,Zhang P Q.Dynamic properties of flexural beams using a nonlocal elasticity model[J].Journal of Applied Physics,2006,99(7):073510.
    [82]Reddy J N,Pang S D.Nonlocal continuum theories of beams for the analysis of carbon nanotubes[J].Journal of Applied Physics,2008,103(2):023511.
    [83]Askes H,Aifantis E C.Gradient elasticity and flexural wave dispersion in carbon nanotubes[J].Physical Review B,2009,80(19):195412.
    [84]Ansari R,Rajabiehfard R,Arash B.Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets[J].Computational Materials Science,2010,49(4):831-838.
    [85]杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9.(Yang W.Meso-mechanics and meso-damage mechanics[J].Advances in Mechanics,1992,22(1):1-9.(in Chinese))
    [86]Liu Y J,Chen X L.Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element[J].Mechanics of Materials,2003,35(1-2):69-81.
    [87]Mohammadpour E,Awang M,Kakooei S,Akil HM.Modeling the tensile stress-strain response of carbon nanotube/polypropylene nanocomposites using nonlinear representative volume element[J].Materials&Design,2014,58:36-42.
    [88]Ramazani A,Mukherjee K,Schwedt A,Goravanchi P,Prahl U,Bleck W.Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels[J].International Journal of Plasticity,2013,43:128-152.
    [89]Tian W,Qi L,Zhou J,Liang J,Ma Y.Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications[J].Composite Structures,2015,131:366-373.
    [90]Dirrenberger J,Forest S,Jeulin D.Towards gigantic RVE sizes for 3Dstochastic fibrous networks[J].International Journal of Solids and Structures,2014,51(2):359-376.
    [91]Gou J J,Zhang H,Dai Y J,Li S,Tao W Q.Numerical prediction of effective thermal conductivities of 3Dfour-directional braided composites[J].Composite Structures,2015,125:499-508.
    [92]Kr9ner E.Bounds for effective elastic moduli of disordered materials[J].Journal of the Mechanics&Physics of Solids,1977,25(2):137-155.
    [93]Walpole L J.On bounds for the overall elastic moduli of inhomogeneous systems-I[J].Journal of the Mechanics and Physics of Solids,1966,14(3):151-162.
    [94]Voigt W.Ueber die Beziehung zwischen den beiden Elasticitatsconstanten isotroper K9rper[J].Annalen der Physik,1889,274(12):573-587.
    [95]Reuss A.Berechnung der fliegrenze von mischkristallen auf grund der plastizitatsbedingung für einkristalle[J].Zeitschrift für Angewandte Mathematik und Mechanik,1929,9(1):49-58.
    [96]Hill R.The elastic behaviour of a crystalline aggregate[J].Proceedings of the Physical Society.Section A,1952,65(5):349-354.
    [97]Hashin Z,Shtrikman S.On some variational principles in anisotropic and nonhomogeneous elasticity[J].Journal of the Mechanics&Physics of Solids,1962,10(4):335-342.
    [98]Hashin Z,Shtrikman S.A variational approach to the theory of the elastic behaviour of polycrystals[J].Journal of the Mechanics&Physics of Solids,1962,10(4):343-352.
    [99]Kr9ner E.Bounds for effective elastic moduli of disordered materials[J].Journal of the Mechanics and Physics of Solids,1977,25(2):137-155.
    [100]Dederichs P H,Zeller R.Variational treatment of the elastic constants of disordered materials[J].Zeitschrift für Physik A Hadrons and nuclei,1973,259(2):103-116.
    [101]Lobos M,B9hlke T.On optimal zeroth-order bounds of linear elastic properties of multiphase materials and application in materials design[J].International Journal of Solids and Structures,2016,84:40-48.
    [102]Nadeau J,Ferrari M.On optimal zeroth-order bounds with application to Hashin-Shtrikman bounds and anisotropy parameters[J].International Journal of Solids and Structures,2001,38(44):7945-7965.
    [103]Guo Z,Chen Y,Wan Q,Li H,Shi X,Tang S,Peng X.A hyperelastic constitutive model for chainstructured particle reinforced Neo-Hookean composites[J].Materials&Design,2016,95:580-590.
    [104]Christensen R M,Lo K H.Solutions for effective shear properties in three phase sphere and cylinder models[J].Journal of the Mechanics&Physics of Solids,1979,27(4):315-330.
    [105]Whitney J,Riley M.Elastic properties of fiber reinforced composite materials[J].AIAA Journal,1966,4:1537-1542.
    [106]Pan F,Chen Y,Liu Y,Guo Z.Out-of-plane bending of carbon nanotube films[J].International Journal of Solids and Structures,2017,106-107:183-199.
    [107]Lobos M,Yuzbasioglu T,B9hlke T.Homogenization and materials design of anisotropic multiphase linear elastic materials using central model functions[J].Journal of Elasticity,2017,128(1):17-6.
    [108]Upadhyay A,Beniwal R S,Singh R.Elastic properties of Al2O3-NiAl:A modified version of HashinShtrikman bounds[J].Continuum Mechanics and Thermodynamics,2012,24(3):257-266.
    [109]Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion,and related problems[J].Proceedings of the Royal Society of London,1957,241(1226):376-396.
    [110]Budiansky B.On the elastic moduli of some heterogeneous materials[J].Journal of the Mechanics&Physics of Solids,1965,13(4):223-227.
    [111]Hill R.A self-consistent mechanics of composite materials[J].Journal of the Mechanics&Physics of Solids,1965,13(4):213-222.
    [112]Chou T W,Nomura S,Taya M.A self-consistent approach to the elastic stiffness of short-fiber composites[J].Journal of Composite Materials,1980,14(3):178-188.
    [113]Christensen R M.A critical evaluation for a class of micro-mechanics models[J].Journal of the Mechanics&Physics of Solids,1990,38(3):379-404.
    [114]Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Metallurgica,1973,21(5):571-574.
    [115]Weng G J.Some elastic properties of reinforced solids,with special reference to isotropic ones containing spherical inclusions[J].International Journal of Engineering Science,1984,22(7):845-856.
    [116]Benveniste Y.A new approach to the application of Mori-Tanaka's theory in composite materials[J].Mechanics of Materials,1987,6(2):147-157.
    [117]黄克智,黄永刚.固体本构关系[M].清华大学出版社,1999.(Huang K Z,Huang Y G.Constitutive Relation of Solids[M].Tsinghua University Press,1999.(in Chinese))
    [118]Qu J,Cherkaoui M.Fundamentals of Micromechanics of Solids[M].John Wiley&Sons,Inc.,2006.
    [119]Huang Y,Hu K X.A generalized self-consistent mechanics method for solids containing elliptical inclusions[J].Journal of Applied Mechanics,1995,62(3):566-572.
    [120]Huang Y,Hu K X,Wei X,Chandra A.A generalized self-consistent mechanics method for composite materials with multiphase inclusions[J].Journal of the Mechanics and Physics of Solids,1994,42(3):491-504.
    [121]Zheng Q S,Du D X.An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J].Journal of the Mechanics and Physics of Solids,2001,49(11):2765-2788.
    [122]Du D X,Zheng Q S.A further exploration of the interaction direct derivative(IDD)estimate for the effective properties of multiphase composites taking into account inclusion distribution[J].Acta Mechanica,2002,157(1):61-80.
    [123]Huang Y,Hwang K C,Hu K X,Chandra A.A unified energy approach to a class of micromechanics models for composite materials[J].Acta Mechanica Sinica,1995,11(1):110-120.
    [124]Ponte Castaneda P.The effective mechanical properties of nonlinear isotropic composites[J].Journal of the Mechanics&Physics of Solids,1991,39(1):45-71.
    [125]Ponte Castaneda P.New variational principles in plasticity and their application to composite materials[J].Journal of the Mechanics&Physics of Solids,1992,40(8):1757-1788.
    [126]G.Kresse.Vienna ab Initio Simulation Package(VASP)[Z].http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html,2003.
    [127]Suquet P.Overall potentials and extremal surfaces of power law or ideally plastic composites[J].Journal of the Mechanics and Physics of Solids,1993,41(6):981-1002.
    [128]Olson T.Improvements on Taylor's upper bound for rigid-plastic composites[J].Materials Science&Engineering A,1994,175(1-2):15-20.
    [129]Tandon G,Weng G.The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites[J].Polymer Composites,1984,5(4):327-333.
    [130]Zhao Y,Tandon G,Weng G.Elastic moduli for a class of porous materials[J].Acta Mechanica,1989,76(1):105-131.
    [131]Pan H,Weng G.Elastic moduli of heterogeneous solids with ellipsoidal inclusions and elliptic cracks[J].Acta Mechanica,1995,110(1):73-94.
    [132]Weng G,Tandon G.A theory of particle-reinforced plasticity[J].ASME Journal of Applied Mechanics,1988,55(3):126-135.
    [133]Li J,Weng G.Effective creep behavior and complex moduli of fiber-and ribbon-reinforced polymer-matrix composites[J].Composites Science and Technology,1994,52(4):615-629.
    [134]Li J,Weng G.Anisotropic stress-strain relations and complex moduli of a viscoelastic composite with aligned spheroidal inclusions[J].Composites Engineering,1994,4(11):1073-1097.
    [135]Li J,Weng G.A secant-viscosity approach to the time-dependent creep of an elastic viscoplastic composite[J].Journal of the Mechanics and Physics of Solids,1997,45(7):1069-1083.
    [136]Li J,Weng G.Strain-rate sensitivity,relaxation behavior,and complex moduli of a class of isotropic viscoelastic composites[J].Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology,1994,116:495-495.
    [137]Kuo T H,Pan H H,Weng G J.Micromechanicsbased predictions on the overall stress-strain relations of cement-matrix composites[J].Journal of Engineering Mechanics,2008,134(12):1045-1052.
    [138]Weng G J.A homogenization scheme for the plastic properties of nanocrystalline materials[J].Rev.Adv.Mater.Sci,2009,19(1-2):41-62.
    [139]Li J,Weng G.A micromechanical approach to the stress-strain relations,strain-rate sensitivity and activation volume of nanocrystalline materials[J].International Journal of Mechanics and Materials in Design,2013,9(2):141-152.
    [140]Wang J F,Zhang L W,Liew K M.Multiscale simulation of mechanical properties and microstructure of CNT-reinforced cement-based composites[J].Computer Methods in Applied Mechanics and Engineering,2017,319(Supplement C):393-413.
    [141]Sobhaniaragh B,Batra R,Mansur W,Peters F.Thermal response of ceramic matrix nanocomposite cylindrical shells using Eshelby-Mori-Tanaka homogenization scheme[J].Composites Part B:Engineering,2017,118:41-53.
    [142]Shen H S.Functionally Graded Materials:Nonlinear Analysis of Plates and Shells[M].CRC Press,2009.
    [143]Shen H S,Wang Z X.Assessment of voigt and MoriTanaka models for vibration analysis of functionally graded plates[J].Composite Structures,2012,94(7):2197-2208.
    [144]Shen H S.Thermal postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium[J].Journal of Engineering Mechanics,2013,139(8):979-991.
    [145]Kiani Y,Eslami M.Thermal postbuckling of imperfect circular functionally graded material plates[J].Journal of Pressure Vessel Technology,2015,137(2):021201.
    [146]Chen T,Dvorak G J,Benveniste Y.Mori-Tanaka estimates of the overall elastic moduli of certain composite materials[J].Journal of Applied Mechanics,1992,59:539.
    [147]Abaimov S G,Khudyakova A A,Lomov S V.On the closed form expression of the Mori-Tanaka theory prediction for the engineering constants of a unidirectional fiber-reinforced ply[J].Composite Structures,2016,142:1-6.
    [148]Rosen B W.Tensile failure of fibrous composites[J].AIAA Journal,1964,2(11):1985-1991.
    [149]Gücer D E,Gurland J.Comparison of the statistics of two fracture modes[J].Journal of the Mechanics and Physics of Solids,1962,10(4):365-373.
    [150]Zweben C.Tensile failure of fiber composites[J].AIAA Journal,1968,6(12):2325-2331.
    [151]Tresca H.On the yield of solids at high pressures[J].Comptes Rendus Academie des Sciences,1864,59:754.
    [152]Mises R V.Mechanik der Festen K9rper im Plastisch-deformablen Zustand[M].Nachrichten von der Gesellschaft der Wissenschaften zu G9ttingen,Mathematisch-Physikalische Klasse,1913:582-592.
    [153]Hill R.塑性数学理论[M].王仁,等.译.北京:科学出版社.1966.(Hill R.Mathematical Theory of Plasticity[M].Wang R et.al.Beijing:Science Press,1996.(in Chinese))
    [154]Chu E.Generalization of Hill’s 1979anisotropic yield criteria[J].Journal of Materials Processing Technology,1995,50(1):207-215.
    [155]Barlat F,Lian K.Plastic behavior and stretchability of sheet metals.Part I:A yield function for orthotropic sheets under plane stress conditions[J].International Journal of Plasticity,1989,5(1):51-66.
    [156]Barlat F,Lege D J,Brem J C.A six-component yield function for anisotropic materials[J].International Journal of Plasticity,1991,7(7):693-712.
    [157]Barlat F,Brem J C,Yoon J W,Chung K,Dick R E,Lege D J,Pourboghrat F,Choi S H,Chu E.Plane stress yield function for aluminum alloy sheets-part1:theory[J].International Journal of Plasticity,2003,19(9):1297-1319.
    [158]张飞飞,陈劼实,陈军,黄晓忠,卢健.各向异性屈服准则的发展及实验验证综述[J].力学进展,2012,42(1):68-80.(Zhang F F,Chen J S,Chen J,Huang X,Lu J.Review on development and experimental validation for anisotropic yield criterions[J].Advances in Mechanics,2012,42(1):68-80.(in Chinese))
    [159]Banabic D.Anisotropy of Sheet Metal,in:Banabic,D.(Ed.),Formability of Metallic Materials:Plastic Anisotropy,Formability Testing,Forming Limits[M].Springer Berlin Heidelberg,Berlin:Heidelberg,2000,119-172.
    [160]Cox H L.The elasticity and strength of paper and other fibrous materials[J].British Journal of Applied Physics,1952,3(3):72.
    [161]Dow N F.Study of Stress Near a Discontinuity in a Filament Reinforced Composite[R].Philadelphia:Space SciLab Missile and Space Div,General Electric Co Tech,1963.
    [162]Chon C T,Sun C T.Stress distributions along a short fibre in fibre reinforced plastics[J].Journal of Materials Science,1980,15(4):931-938.
    [163]Hsueh C H.A two-dimensional stress transfer model for platelet reinforcement[J].Composites Engineering,1994,4(10):1033-1043.
    [164]Tyson W,Davies G.A photoelastic study of the shear stresses associated with the transfer of stress during fibre reinforcement[J].British Journal of Applied Physics,1965,16(2):199.
    [165]Gao X L,Li K.A shear-lag model for carbon nanotube-reinforced polymer composites[J].International Journal of Solids and Structures,2005,42(5):1649-1667.
    [166]Ang K K,Ahmed K S.An improved shear-lag model for carbon nanotube reinforced polymer composites[J].Composites Part B:Engineering,2013,50:7-14.
    [167]Wang S,Chen Y,Ma Y,Wang Z,Zhang J.Size effect on interlayer shear between graphene sheets[J].Journal of Applied Physics,2017,122(7):074301.
    [168]张滇军,徐世烺.短纤维增强混凝土应力传递剪滞理论的改进[J].工程力学,2005,22(6):165-169.(Zhang D J,Xu S L.Improvement on shear-lag theory for stress transfer in short fibre reinforced concrete[J].Engineering Mechanics,2005,22(6):165-169.(in Chinese))
    [169]Chen Y,Liu B,Hwang K,Huang Y.A theoretical evaluation of load transfer in multi-walled carbon nanotubes[J].Carbon,2011,49(1):193-197.
    [170]Ji B,Gao H.Mechanical properties of nanostructure of biological materials[J].Journal of the Mechanics and Physics of Solids,2004,52(9):1963-1990.
    [171]Chen B,Wu P D,Gao H.A characteristic length for stress transfer in the nanostructure of biological composites[J].Composites Science and Technology,2009,69(7):1160-1164.
    [172]Pimenta S,Robinson P.An analytical shear-lag model for composites with‘brick-and-mortar’architecture considering non-linear matrix response and failure[J].Composites Science and Technology,2014,104:111-124.
    [173]Dugdale D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8(2):100-104.
    [174]Barenblatt G I.The formation of equilibrium cracks during brittle fracture.General ideas and hypotheses.Axially-symmetric cracks[J].Journal of Applied Mathematics and Mechanics,1959,23(3):622-636.
    [175]Hillerborg A,Modéer M,Petersson P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cement and Concrete Research,1976,6(6):773-781.
    [176]Rahul-Kumar P,Jagota A,Bennison S J,Saigal S.Interfacial failures in a compressive shear strength test of glass/polymer laminates[J].International Journal of Solids and Structures,2000,37(48):7281-7305.
    [177]Zhang Z,Paulino G H.Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials[J].International Journal of Plasticity,2005,21(6):1195-1254.
    [178]van den Bosch M J,Schreurs P J G,Geers M G D.An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion[J].Engineering Fracture Mechanics,2006,73(9):1220-1234.
    [179]卢子兴.复合材料界面的内聚力模型及其应用[J].固体力学学报,2015,36(S1):85-94.(Lu Z X.Asimple review for cohesive zone models of composite interface and their applications[J].Chinese Journal of Solid Mechanics,2015,36(S1):85-94.(in Chinese))
    [180]Mohammed I,Liechti K M.Cohesive zone modeling of crack nucleation at bimaterial corners[J].Journal of the Mechanics and Physics of Solids,2000,48(4):735-764.
    [181]Hong S,Kim K S.Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip:a field projection method[J].Journal of the Mechanics and Physics of Solids,2003,51(7):1267-1286.
    [182]Jiang L Y,Huang Y,Jiang H,Ravichandran G,Gao H,Hwang K C,Liu B.A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force[J].Journal of the Mechanics and Physics of Solids,2006,54(11):2436-2452.
    [183]Lu W B,Wu J,Song J,Hwang K C,Jiang L Y,Huang Y.A cohesive law for interfaces between multi-wall carbon nanotubes and polymers due to the van der Waals interactions[J].Computer Methods in Applied Mechanics and Engineering,2008,197(41):3261-3267.
    [184]Lu W B,Wu J,Jiang L Y,Huang Y,Hwang K C,Liu B.A cohesive law for multi-wall carbon nanotubes[J].Philosophical Magazine,2007,87(14):2221-2232.
    [185]Lu W B,Wu J,Jiang L Y,Huang Y,Hwang K C,Liu B.A cohesive law for multi-wall carbon nanotubes[J].Philosophical Magazine,2007,87(14-15):2221-2232.
    [186]Jiang L Y,Huang Y,Jiang H,Ravichandran G,Gao H,Hwang K C,Liu B.A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force[J].Journal of the Mechanics&Physics of Solids,2006,54(11):2436-2452.
    [187]Timoshenko S P,Woinowsky-Krieger S.Theory of Plates and Shells[M].McGraw-hill,1959.
    [188]黄克智等.板壳理论[M].清华大学出版社,1987.(Huang K Z et,al.Theory of Plates and Shells[M].Tsinghua University Press,1987.(in Chinese))
    [189]吴连元.板壳理论[M].上海交通大学出版社,1989.(Wu L Y.Theory of Plates and Shells[M].Shanghai Jiao Tong University Press,1989.(in Chinese))
    [190]Yang P C,Norris C H,Stavsky Y.Elastic wave propagation in heterogeneous plates[J].International Journal of Solids and Structures,1966,2(4):665-684.
    [191]Whitney J M,Pagano N J.Shear deformation in heterogeneous anisotropic plates[J].Journal of Applied Mechanics,1970,37(4):1031-1036.
    [192]Reddy J N.A simple higher-order theory for laminated composite plates[J].Journal of Applied Mechanics,1984,51(4):745-752.
    [193]Reissner E.Finite deflections of sandwich plates[J].Journal of the Aeronautical Sciences,1948,15(7):435-440.
    [194]Pai P F,Nayfeh A H.A nonlinear composite plate theory[J].Nonlinear Dynamics,1991,2(6):445-477.
    [195]Whitney J M.Stress analysis of thick laminated composite and sandwich plates[J].Journal of Composite Materials,1972,6(3):426-440.
    [196]Chou P C,Carleone J,Hsu C M.Elastic constants of layered media[J].Journal of Composite Materials,1972,6(1):80-93.
    [197]Hart-Smith L.Bolted Joints in Graphite-epoxy Composites[R].Mcdonnell Douglas Corp Long Beach ca Douglas Aircraft Div,1976.
    [198]Whitney J M,Nuismer R J.Stress fracture criteria for laminated composites containing stress concentrations[J].Journal of Composite Materials,1974,8(3):253-265.
    [199]Hill R.A theory of the yielding and plastic flow of anisotropic[J].Proceedings of the Royal Society of London,1948,193(1033):281-297.
    [200]Tsai S W.Strength theories of filamentary structure[J].Fundamental Aspects of Fiber Reinforced Plastic Composites,1968,
    [201]Tsai S W,Wu E M.A general theory of strength for anisotropic materials[J].Journal of Composite Materials,1971,5(1):58-80.
    [202]Hashin Z.Failure criteria for unidirectional fiber composites[J].Journal of Applied Mechanics,1980,47(2):329-334.
    [203]Hoffman O.The brittle strength of orthotropic materials[J].Journal of Composite Materials,1967,1(2):200-206.
    [204]赵丽滨,徐吉峰.先进复合材料连接结构分析方法[M].北京航空航天大学出版社,2015.(Zhao L B,Xu J F.Analysis Method of Advanced Composite Material Connection Structure[M].Beihang University Press,2015.(in Chinese))
    [205]Lin Y.Role of matrix resin in delamination onset and growth in composite laminates[J].Composites Science and Technology,1988,33(4):257-277.
    [206]Brewer J C,Lagace P A.Quadratic stress criterion for initiation of delamination[J].Journal of Composite Materials,1988,22(12):1141-1155.
    [207]Tong L.An assessment of failure criteria to predict the strength of adhesively bonded composite double lap joints[J].Journal of Reinforced Plastics and Composites,1997,16(8):698-713.
    [208]R M J,朱颐龄.复合材料力学[M].上海科学技术出版社,1981.(R M J,Zhu Y L.Mechanics of Composite Materials[M].Shanghai Science and Technology Press,1981.(in Chinese))
    [209]Fermeglia M,Pricl S.Multiscale molecular modeling in nanostructured material design and process system engineering[J].Computers&Chemical Engineering,2009,33(10):1701-1710.
    [210]Kohn W,Sham L J.Self-consistent equations including exchange and correlation effects[J].Physical Review,1965,140(4A):A1133--A1138.
    [211]Car R,Parrinello M.Unified approach for molecular dynamics and density-functional theory[J].Physical Review Letters,1985,55(22):2471-2474.
    [212]Surhone L M,Tennoe M T,Henssonow S F.Vienna ab-initio simulation package[J],2010,
    [213]Metropolis N,Rosenbluth A W,Rosenbluth M N,Teller A H,Teller E.Equation of state calculations by fast computing machines[J].The Journal of Chemical Physics,1953,21(6):1087-1092.
    [214]Li C,Chou T W.A structural mechanics approach for the analysis of carbon nanotubes[J].International Journal of Solids and Structures,2003,40(10):2487-2499.
    [215]Liu B,Huang Y,Jiang H,Qu S,Hwang K.The atomic-scale finite element method[J].Computer Methods in Applied Mechanics and Engineering,2004,193(17):1849-1864.
    [216]Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
    [217]Silling S A.Reformulation of elasticity theory for discontinuities and long-range forces[J].Journal of the Mechanics&Physics of Solids,2000,48(1):175-209.
    [218]Nielsen S O,Lopez C F,Srinivas G,Klein M L.Coarse grain models and the computer simulation of soft materials[J].Journal of Physics:Condensed Matter,2004,16(15):R481-R512.
    [219]Stoneham A M,Harding J H.Not too big,not too small:The appropriate scale[J].Nature Materials,2003,2(2):77-83.
    [220]Tang Y,Chen W,Liu Z,Wang X,Chang S,Dai X.Geometric,electronic,magnetic and catalytic properties of carbon deposited on metal embedded graphene[J].Computational Materials Science,2017,126:74-81.
    [221]Peng X,Meguid S A.Molecular simulations of the influence of defects and functionalization on the shear strength of carbon nanotube-epoxy polymer interfaces[J].Computational Materials Science,2017,126:204-216.
    [222]Park H K,Jung J,Kim H S.Three-dimensional microstructure modeling of particulate composites using statistical synthetic structure and its thermo-mechanical finite element analysis[J].Computational Materials Science,2017,126:265-271.
    [223]韩传军,张杰,牛世伟.基于有限元的法兰接头强度特性分析[J].石油机械,2013,41(4):98-101.(Han C J,Zhang J,Niu S W.FEM analysis of flange joint strength characteristic[J].China Petroleum Machinery,2013,41(4):98-101.(in Chinese))
    [224]Bensoussan A,Lions J L,Papanicolaou G.Asymptotic Analysis for Periodic Structures[M].NorthHolland Publishing Company Amsterdam,1978.
    [225]Cioranescu D,Paulin J S J.Homogenization in open sets with holes[J].Journal of Mathematical Analysis&Applications,1979,71(2):590-607.
    [226]Oleinik O A.On homogenization problems,in:Ciarlet P G,Roseau M Eds.Trends and Applications of Pure Mathematics to Mechanics[M].Springer Berlin Heidelberg,Berlin:Heidelberg,1984,248-272.
    [227]Sanchez-Palencia E.Non-homogeneous Media and Vibration Theory[M].Springer-Verlag,1980.
    [228]Oleinik O A e,Shamaev A,Yosifian G.Mathematical Problems in Elasticity and Homogenization[M].Elsevier,1992.
    [229]Chung P W,Tamma K K,Namburu R R.Asymptotic expansion homogenization for heterogeneous media:computational issues and applications[J].Composites Part A:Applied Science and Manufacturing,2001,32(9):1291-1301.
    [230]Buannic N,Cartraud P.Higher-order effective modeling of periodic heterogeneous beams.I.Asymptotic expansion method[J].International Journal of Solids and Structures,2001,38(40):7139-7161.
    [231]Fish J,Chen W.Higher-order homogenization of initial/boundary-value problem[J].Journal of Engineering Mechanics,2001,127(12):1223-1230.
    [232]Fish J,Chen W,Nagai G.Non-local dispersive model for wave propagation in heterogeneous media:onedimensional case[J].International Journal for Numerical Methods in Engineering,2002,54(3):331-346.
    [233]Fish J,Chen W,Nagai G.Non-local dispersive model for wave propagation in heterogeneous media:multi-dimensional case[J].International Journal for Numerical Methods in Engineering,2002,54(3):347-363.
    [234]Chen W,Fish J.A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales[J].Journal of Applied Mechanics,2001,68(2):153-161.
    [235]Lefik M,Schrefler B A.Modelling of nonstationary heat conduction problems in micro-periodic composites using homogenization theory with corrective terms[J].Archives of Mechanics,2000,52(2):203-223.
    [236]Zhang H W,Zhang S,Bi J Y,Schrefler B A.Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach[J].International Journal for Numerical Methods in Engineering,2007,69(1):87-113.
    [237]Fish J,Yu Q.Multiscale damage modelling for composite materials:theory and computational framework[J].International Journal for Numerical Methods in Engineering,2001,52(1-2):161-191.
    [238]Boso D P,Lefik M,Schrefler B A.A multilevel homogenised model for superconducting strand thermomechanics[J].Cryogenics,2005,45(4):259-271.
    [239]Fish J,Shek K,Pandheeradi M,Shephard M S.Computational plasticity for composite structures based on mathematical homogenization:Theory and practice[J].Computer Methods in Applied Mechanics&Engineering,1997,148(1):53-73.
    [240]Fish J,Yu Q,Shek K.Computational damage mechanics for composite materials based on mathematical homogenization[J].International Journal for Numerical Methods in Engineering,1999,45(11):1657-1679.
    [241]Marcellini P.Periodic solutions and homogenization of non linear variational problems[J].Annali di Matematica Pura ed Applicata,1978,117(1):139-152.
    [242]Zienkiewicz O C,Taylor R L,Fox D D.The Finite Element Method for Solid and Structural Mechanics[M].Butterworth-heinemann,2005.
    [243]Sanchez-Palencia E,Zaoui A.Homogenization Techniques for Composite Media[C].Homogenization Techniques for Composite Media,1987.
    [244]Ghosh S,Bai J,Paquet D.Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities[J].Journal of the Mechanics and Physics of Solids,2009,57(7):1017-1044.
    [245]Paquet D,Ghosh S.Microstructural effects on ductile fracture in heterogeneous materials.Part I:Sensitivity analysis with LE-VCFEM[J].Engineering Fracture Mechanics,2011,78(2):205-225.
    [246]Hu C,Ghosh S.Locally enhanced Voronoi cell finite element model(LE-VCFEM)for simulating evolving fracture in ductile microstructures containing inclusions[J].International Journal for Numerical Methods in Engineering,2010,76(12):1955-1992.
    [247]Charalambakis N.Homogenization techniques and micromechanics.A survey and perspectives[J].Applied Mechanics Reviews,2010,63(3):030803.
    [248]Cheng G D,Cai Y W,Xu L.Novel implementation of homogenization method to predict effective properties of periodic materials[J].Acta Mechanica Sinica,2013,29(4):550-556.
    [249]Arabnejad S,Pasini D.Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods[J].International Journal of Mechanical Sciences,2013,77:249-262.
    [250]Cai Y,Xu L,Cheng G.Novel numerical implementation of asymptotic homogenization method for periodic plate structures[J].International Journal of Solids and Structures,2014,51(1):284-292.
    [251]杨强,解维华,孟松鹤,杜善义,李勇霞.复合材料多尺度分析方法与典型元件拉伸损伤模拟[J].复合材料学报,2015,32(3):617-624.(Yang Q,Xie WH,Meng S H,Du S Y,Li Y X.FEM analysis of flange joint strength characteristic[J].Acta Materiae Compositae Sinica,2015,32(3):617-624.(in Chinese))
    [252]Guan X,Liu X,Jia X,Yuan Y,Cui J,Mang H A.A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete[J].International Journal of Solids and Structures,2015,56:280-289.
    [253]Visrolia A,Meo M.Multiscale damage modelling of3D weave composite by asymptotic homogenisation[J].Composite Structures,2013,95:105-113.
    [254]Bosco E,Peerlings R,Geers M.Hygro-mechanical properties of paper fibrous networks through asymptotic homogenization and comparison with idealized models[J].Mechanics of Materials,2017,108:11-20.
    [255]Bosco E,Peerlings R,Geers M.Asymptotic homogenization of hygro-thermo-mechanical properties of fibrous networks[J].International Journal of Solids and Structures,2017,115-116(1):180-189.
    [256]Xing Y F,Chen L.Accuracy of multiscale asymptotic expansion method[J].Composite Structures,2014,112(1):38-43.
    [257]Aboudi J.Generalized effective stiffness theory for the modeling of fiber-reinforced composites[J].International Journal of Solids and Structures,1981,17(10):1005-1018.
    [258]Paley M,Aboudi J.Micromechanical analysis of composites by the generalized cells model[J].Mechanics of Materials,1992,14(2):127-139.
    [259]Aboudi J.The generalized method of cells and HighFidelity Generalized Method of Cells micromechanical models-a review[J].Mechanics of Advanced Materials&Structures,2004,11(4-5):329-366.
    [260]Aboudi J.Micromechanical analysis of composites by the method of cells[J].Applied Mechanics Reviews,1989,42(7):193-221.
    [261]Haj-Ali R,Aboudi J.Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites[J].International Journal of Solids&Structures,2010,47(25-26):3447-3461.
    [262]Williams T O,Aboudi J.A generalized micromechanics model with shear-coupling[J].Acta Mechanica,1999,138(3):131-154.
    [263]Williams T O.A three-dimensional,higher-order,elasticity-based micromechanics model[J].International Journal of Solids&Structures,2005,42(3-4):971-1007.
    [264]Bansal Y,Pindera M J.Finite-volume direct averaging micromechanics of heterogeneous materials with elastic-plastic phases[J].International Journal of Plasticity,2006,22(5):775-825.
    [265]Arnold S M,Bednarcyk B A,Hussain A,Katiyar V,Systemes D,Corp S.Micromechanics-based structural analysis(FEAMAC)and multi-scale visualization within Abaqus/CAE environment[J].NASA/TM,2010,216336.
    [266]Moghaddam M G,Achuthan A,Bednarcyk B,Arnold S,Pineda E.A multi-scale computational model using Generalized Method of Cells(GMC)homogenization for multi-phase single crystal metals[J].Computational Materials Science,2015,96:44-55.
    [267]Stier B,Naghipou P,Pineda E J,Hansen L,Arnold SM,Bednarcyk B A,Waas A M.Multiscale Static A-nalysis of Notched and Unnotched Laminates Using the Generalized Method of Cells[C].56th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,2015.
    [268]Naghipour P,Arnold S M,Pineda E J,Stier B,Hansen L,Bednarcyk B A,Waas A M.Multiscale static analysis of notched and unnotched laminates using the generalized method of cells[J].Journal of Composite Materials,2017,51(10):1433-1454.
    [269]Ghorbani Moghaddam M,Achuthan A,Bednarcyk BA,Arnold S M,Pineda E J.A multiscale computational model combining a single crystal plasticity constitutive model with the Generalized Method of Cells(GMC)for metallic polycrystals[J].Materials,2016,9(5):335.
    [270]Naghipour P,Arnold S M,Pineda E J,Stier B,Hansen L,Bednarcyk B A,Waas A M.Multiscale static analysis of notched and unnotched laminates using the generalized method of cells[J].Journal of Composite Materials,2017,51(10):1433-1454.
    [271]Ricks T M,Lacy T E,Pineda E J,Bednarcyk B A,Arnold S M.Computationally efficient High-Fidelity Generalized Method of Cells micromechanics via order-reduction techniques[J].Composite Structures,2016,156:2-9.
    [272]Li H,Zhang B.A new viscoelastic model based on generalized method of cells for fiber-reinforced composites[J].International Journal of Plasticity,2014,65:22-32.
    [273]Hackett R M.Modeling carbon nanotube reinforced composite materials with the cylindrical method of cells[J].International Journal for Numerical Methods in Engineering,2015,103(6):413-429.
    [274]Prodromou A G,Lomov S V,Verpoest I.The method of cells and the mechanical properties of textile composites[J].Composite Structures,2011,93(4):1290-1299.
    [275]Borkowski L,Chattopadhyay A.Multiscale model of woven ceramic matrix composites considering manufacturing induced damage[J].Composite Structures,2015,126:62-71.
    [276]Ghosh S,Mukhopadhyay S N.A two-dimensional automatic mesh generator for finite element analysis of random composites[J].Computers&Structures,1991,41(2):245-256.
    [277]Ghosh S,Mukhopadhyay S N.A material based finite element analysis of heterogeneous media involving dirichlet tesselations[J].Computer Methods in Applied Mechanics and Engineering,1993,104(2):211-247.
    [278]Ghosh S,Liu Y.Voronoi cell finite element method for micropolar thermo-elastic heterogeneous materials[J].International Journal for Numerical Methods in Engineering,1995,38(8):1361-1398.
    [279]Moorthy S,Ghosh S,Liu Y.Voronoi cell finite element model for thermoelastoplastic deformation in random heterogeneous media[J].Applied Mechanics Reviews,1994,47(1S):S207-S220.
    [280]Ghosh S,Moorthy S.Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method[J].Computer Methods in Applied Mechanics&Engineering,1995,121(1-4):373-409.
    [281]Ghosh S,Lee K,Moorthy S.Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model[J].Computer Methods in Applied Mechanics and Engineering,1996,132(1):63-116.
    [282]Lee K,Moorthy S,Ghosh S.Multiple scale computational model for damage in composite materials[J].Computer Methods in Applied Mechanics and Engineering,1999,172(1):175-201.
    [283]Moorthy S,Ghosh S.Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials[J].Computer Methods in Applied Mechanics and Engineering,2000,185(1):37-74.
    [284]Ghosh S,Lee K,Raghavan P.A multi-level computational model for multi-scale damage analysis in composite and porous materials[J].International Journal of Solids and Structures,2001,38(14):2335-2385.
    [285]Grujicic M,Zhang Y.Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method[J].Materials Science and Engineering:A,1998,251(1):64-76.
    [286]Paquet D,Ghosh S.Microstructural effects on ductile fracture in heterogeneous materials.Part II:Applications to cast aluminum microstructures[J].Engineering Fracture Mechanics,2011,78(2):226-233.
    [287]Zhang H W,Wang H.Parametric variational principle based elastic-plastic analysis of heterogeneous materials with Voronoi finite element method[J].Applied Mathematics and Mechanics,2006,27(8):1037-1047.
    [288]Zhang H W,Wang H,Wang J B.Parametric variational principle based elastic-plastic analysis of materials with polygonal and Voronoi cell finite element methods[J].Finite Elements in Analysis and Design,2007,43(3):206-217.
    [289]Zhang H W,Wang H,Chen B S,Xie Z Q.Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle[J].Computer Methods in Applied Mechanics and Engineering,2008,197(6):741-755.
    [290]Wang Z,Li P.Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina[J].Ceramics International,2017,43(9):6967-6975.
    [291]Guo R,Shi H J,Yao Z H.Modeling of interfacial debonding crack in particle reinforced composites using Voronoi cell finite element method[J].Computational Mechanics,2003,32(1):52-59.
    [292]Guo R,Zhang W,Tan T,Qu B.Modeling of fatigue crack in particle reinforced composites with Voronoi cell finite element method[J].Procedia Engineering,2012,31(Supplement C):288-296.
    [293]Eder P M,Giuliani J E,Ghosh S.Multilevel parallel programming for multiscale modeling of composite materials[J].International Journal for Multiscale Computational Engineering,2004,2(3):23.
    [294]Ghosh S.Adaptive hierarchical-concurrent multiscale modeling of ductile failure in heterogeneous metallic materials[J].JOM,2015,67(1):129-142.
    [295]RappéA K,Casewit C J,Colwell K,Goddard Iii W,Skiff W.UFF,a full periodic table force field for molecular mechanics and molecular dynamics simulations[J].Journal of the American Chemical Society,1992,114(25):10024-10035.
    [296]Gelin B R.Molecular Modeling of Polymer Structures and Properties[M].Hanser Publishers,1994.
    [297]Wang Y,Fang D,Soh A K,Liu B.A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes[J].Acta Mechanica Sinica,2007,23(6):663-671.
    [298]Chen W H,Cheng H C,Liu Y L.Radial mechanical properties of single-walled carbon nanotubes using modified molecular structure mechanics[J].Computational Materials Science,2010,47(4):985-993.
    [299]Narendar S,Roy Mahapatra D,Gopalakrishnan S.Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics,nonlocal elasticity and wave propagation[J].International Journal of Engineering Science,2011,49(6):509-522.
    [300]Karimi M,Montazeri A,Ghajar R.On the elastoplastic behavior of CNT-polymer nanocomposites[J].Composite Structures,2017,160:782-791.
    [301]Xiao J R,Staniszewski J,Gillespie J W.Fracture and progressive failure of defective graphene sheets and carbon nanotubes[J].Composite Structures,2009,88(4):602-609.
    [302]Sakhaee-Pour A,Ahmadian M T,Vafai A.Potential application of single-layered graphene sheet as strain sensor[J].Solid State Communications,2008,147(7):336-340.
    [303]Sakhaee-Pour A.Elastic buckling of single-layered graphene sheet[J].Computational Materials Science,2009,45(2):266-270.
    [304]Panchal M B,Upadhyay S H.Boron nitride nanotube-based biosensor for acetone detection:molecular structural mechanics-based simulation[J].Molecular Simulation,2014,40(13):1035-1042.
    [305]Liu B,Jiang H,Huang Y,Qu S,Yu M F,Hwang K.Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes[J].Physical Review B,2005,72(3):035435.
    [306]Feng X,Jiang H,Huang Y,Liu B,Chen J S.Modeling fracture in carbon nanotubes using a meshless atomic-scale finite-element method[J].JOM Journal of the Minerals,Metals and Materials Society,2008,60(4):50-55.
    [307]Iacobellis V,Behdinan K.Multiscale coupling using a finite element framework at finite temperature[J].International Journal for Numerical Methods in Engineering,2012,92(7):652-670.
    [308]Xu R,Liu B.A hybrid molecular dynamics/atomicscale finite element method for quasi-static atomistic simulations at finite temperature[J].Journal of Applied Mechanics,2014,81(5):051005.
    [309]Guo X,Leung A Y,Jiang H,He X Q,Huang Y.Critical strain of carbon nanotubes:an atomic-scale finite element study[J].Journal of Applied Mechanics,2007,74(2):347-351.
    [310]Leung A Y T,Guo X,He X Q,Jiang H,Huang Y.Postbuckling of carbon nanotubes by atomic-scale finite element[J].Journal of Applied Physics,2006,99(12):124308.
    [311]Guo X,Leung A Y T,He X Q,Jiang H,Huang Y.Bending buckling of single-walled carbon nanotubes by atomic-scale finite element[J].Composites Part B:Engineering,2008,39(1):202-208.
    [312]Chen Y,Liu B,Yin Y,Huang Y,Hwuang K C.Nonlinear deformation processes and damage modes of super carbon nanotubes with armchair-armchair topology[J].Chinese Physics Letters,2008,25(7):2577-2580.
    [313]Chen Y,Yin Y,Huang Y,Hwang K C.Atomistic simulations of the nonlinear deformation and damage modes of super carbon nanotubes[J].Journal of Computational and Theoretical Nanoscience,2009,6(1):41-45.
    [314]Shi M,Li Q,Liu B,Feng X,Huang Y.Atomicscale finite element analysis of vibration mode transformation in carbon nanorings and single-walled carbon nanotubes[J].International Journal of Solids and Structures,2009,46(25):4342-4360.
    [315]Malakouti M,Montazeri A.Nanomechanics analysis of perfect and defected graphene sheets via a novel atomic-scale finite element method[J].Superlattices and Microstructures,2016,94(Supplement C):1-12.
    [316]Adelzadeh M,Shodja H M,Rafii-Tabar H.Computational modeling of the interaction of two edge cracks,and two edge cracks interacting with a nanovoid,via an atomistic finite element method[J].Computational Materials Science,2008,42(2):186-193.
    [317]S?rensen B F,Talreja R.Effects of nonuniformity of fiber distribution on thermally-induced residual stresses and cracking in ceramic matrix composites[J].Mechanics of Materials,1993,16(4):351-363.
    [318]Lomov S V,Ivanov D S,Verpoest I,Zako M,Kurashiki T,Nakai H,Hirosawa S.Meso-FE modelling of textile composites:Road map,data flow and algorithms[J].Composites Science&Technology,2007,67(9):1870-1891.
    [319]Bogdanovich A,Bogdanovich A.Mechanics of Textile and Laminated Composites[M].Springer,1996.
    [320]Tang C Y,Tsui C P,Lin W,Uskokovic P S,Wang Z W.Multi-level finite element analysis for progressive damage behavior of HA/PEEK composite porous structure[J].Composites Part B:Engineering,2013,55(Supplement C):22-30.
    [321]Matsui K,Terada K,Yuge K.Two-scale finite element analysis of heterogeneous solids with periodic microstructures[J].Computers&Structures,2004,82(7):593-606.
    [322]Markovic D,Ibrahimbegovic A.On micro-macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials[J].Computer Methods in Applied Mechanics and Engineering,2004,193(48-51):5503-5523.
    [323]Feyel F.A multilevel finite element method(FE2)to describe the response of highly non-linear structures using generalized continua[J].Computer Methods in Applied Mechanics&Engineering,2003,192(28-30):3233-3244.
    [324]Renard J,Marmonier M F.Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation[J].Aerospace Science and Technology,1987,6:37-51.
    [325]Guedes J,Kikuchi N.Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J].Computer Methods in Applied Mechanics and Engineering,1990,83(2):143-198.
    [326]Terada K,Kikuchi N.Nonlinear homogenization method for practical applications[J].ASME Applied Mechanics Division-Publications-AMD,1995,212:1-16.
    [327]Ghosh S,Lee K,Moorthy S.Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method[J].International Journal of Solids and Structures,1995,32(1):27-62.
    [328]Feyel F.Application du Calcul Parallele Aux Modeles a Grand Nombre de Variables Internes[D].Ecole National Superieure des Mines de Paris,1998.
    [329]Terada K,Kikuchi N.A class of general algorithms for multi-scale analyses of heterogeneous media[J].Computer Methods in Applied Mechanics and Engineering,2001,190(40-41):5427-5464.
    [330]Kouznetsova V,Brekelmans W,Baaijens F.An approach to micro-macro modeling of heterogeneous materials[J].Computational Mechanics,2001,27(1):37-48.
    [331]Moulinec H,Suquet P.A numerical method for computing the overall response of nonlinear composites with complex microstructure[J].Computer Methods in Applied Mechanics&Engineering,1998,157(1-2):69-94.
    [332]Anglin B S,Lebensohn R A,Rollett A D.Validation of a numerical method based on Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical solutions[J].Computational Materials Science,2014,87:209-217.
    [333]Walker K P,Freed A D,Jordan E H.Thermoviscoplastic analysis of fibrous periodic composites by the use of triangular subvolumes[J].Composites Science&Technology,1994,50(1):71-84.
    [334]Eyre D,Milton G W.A fast numerical scheme for computing the response of composites using grid refinement[J].European Physical Journal Applied Physics,1999,6(1):41-47.
    [335]Klinge S,Hackl K.Application of the multiscale FEM to the modeling of nonlinear composites with a random microstructure[J].International Journal for Multiscale Computational Engineering,2012,10(3):213-227.
    [336]Zhang H W,Wu J K,Fu Z D.Extended multiscale finite element method for elasto-plastic analysis of 2Dperiodic lattice truss materials[J].Computational Mechanics,2010,45(6):623-635.
    [337]Hou T Y,Wu X H.A multiscale finite element method for elliptic problems in composite materials and porous media[J].Journal of Computational Physics,1997,134(1):169-189.
    [338]Durlofsky L J.Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[J].Water Resources Research,1991,27(5):699-708.
    [339]McCarthy J F.Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media[J].Transport in Porous Media,1995,19(2):123-137.
    [340]Efendiev Y,Galvis J,Hou T Y.Generalized multiscale finite element methods(GMsFEM)[J].Journal of Computational Physics,2013,251(Supplement C):116-135.
    [341]Jenny P,Lee S H,Tchelepi H A.Multi-scale finitevolume method for elliptic problems in subsurface flow simulation[J].Journal of Computational Physics,2003,187(1):47-67.
    [342]Aarnes J E,Krogstad S,Lie K-A.A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids[J].Multiscale Modeling&Simulation,2006,5(2):337-363.
    [343]Zhang H W,Fu Z D,Wu J K.Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media[J].Advances in Water Resources,2009,32(2):268-279.
    [344]Zhang H,Wu J,Fu Z.Extended multiscale finite element method for mechanical analysis of periodic lattice truss materials[J].International Journal for Multiscale Computational Engineering,2010,8(6):597-613.
    [345]Zhang H,Wu J,Fu Z.Extended multiscale finite element method for elasto-plastic analysis of 2Dperiodic lattice truss materials[J].Computational Mechanics,2010,45(6):623-635.
    [346]Buck M,Iliev O,AndraH.Multiscale finite element coarse spaces for the application to linear elasticity[J].Central European Journal of Mathematics,2013,11(4):680-701.
    [347]Castelletto N,Hajibeygi H,Tchelepi H A.Multiscale finite-element method for linear elastic geomechanics[J].Journal of Computational Physics,2017,331(Supplement C):337-356.
    [348]Spillane N,Dolean V,Hauret P,Nataf F,Pechstein C,Scheichl R.Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[J].Numerische Mathematik,2014,126(4):741-770.
    [349]Calo V M,Efendiev Y,Galvis J,Li G.Randomized oversampling for generalized multiscale finite element methods[J].Multiscale Modeling and Simulation,2016,14(1):482-501.
    [350]Thostenson E T,Li C,Chou T W.Nanocomposites in context[J].Composites Science&Technology,2005,65(3-4):491-516.
    [351]Hussain F,Hojjati M,Okamoto M,Gorga R E.Review article:polymer-matrix nanocomposites,processing,manufacturing,and application:an overview[J].Journal of Composite Materials,2006,40(17):1511-1575.
    [352]Jin L,Bower C,Zhou O.Alignment of carbon nanotubes in a polymer matrix by mechanical stretching[J].Applied Physics Letters,1998,73(9):1197-1199.
    [353]Rafiee M A,Rafiee J,Srivastava I,Wang Z,Song H,Yu Z Z,Koratkar N.Fracture and fatigue in graphene nanocomposites[J].Small,2010,6(2):179-183.
    [354]Zaman I,Kuan H C,Dai J,Kawashima N,Michelmore A,Sovi A,Dong S,Luong L,Ma J.From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites[J].Nanoscale,2012,4(15):4578-4586.
    [355]Ramanathan T,Abdala A A,Stankovich S,Dikin DA,Herreraalonso M,Piner R D et al.Functionalized graphene sheets for polymer nanocomposites[J].Nature Nanotechnology,2008,3(6):327-331.
    [356]杜善义.纳米复合材料研究进展[J].上海大学学报(自然科学版),2014,20(1):1-14.(Du S Y.Advances and prospects of nanocomposites[J].Journal of Shanghai University(Natural Science),2014,20(1):1-14.(in Chinese))
    [357]Liu W,Yan X,Chen G,Ren Z.Recent advances in thermoelectric nanocomposites[J].Nano Energy,2012,1(1):42-56.
    [358]Zhu W,Zheng J P,Liang R,Wang B,Zhang C,Au G,Plichta E J.Ultra-low platinum loading high-performance PEMFCs using buckypaper-supported electrodes[J].Electrochemistry Communications,2010,12(11):1654-1657.
    [359]Lee T Y,Alegaonkar P S,Yoo J B.Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes[J].Thin Solid Films,2007,515(12):5131-5135.
    [360]Liu J,Qiao S Z,Hu Q H,Lu G Q.Magnetic nanocomposites with mesoporous structures:synthesis and applications[J].Small,2011,7(4):425-443.
    [361]Sadeghirad A,Liu F.A three-layer-mesh bridging domain for coupled atomistic-continuum simulations at finite temperature:Formulation and testing[J].Computer Methods in Applied Mechanics&Engineering,2014,268(268):299-317.
    [362]Hao S,Moran B,Kam Liu W,Olson G B.A hierarchical multi-physics model for design of high toughness steels[J].Journal of Computer-Aided Materials Design,2003,10(2):99-142.
    [363]Tschop W,Kremer K,Hahn O,Batoulis J,Bürger T.Simulation of polymer melts.II.From coarsegrained models back to atomistic description[J].Acta Polymerica,1998,49(2-3):75-79.
    [364]Santangelo G,Matteo A D,Mu1ller-Plathe F,Milano G.From mesoscale back to atomistic models:a fast reverse-mapping procedure for vinyl polymer chains[J].Journal of Physical Chemistry B,2007,111(11):2765-2773.
    [365]Sadeghirad A,Su N,Liu F.Mechanical modeling of graphene using the three-layer-mesh bridging domain method[J].Computer Methods in Applied Mechanics&Engineering,2015,294:278-298.
    [366]Liu W K,Karpov E G,Zhang S,Park H S.An introduction to computational nanomechanics and materials[J].Computer Methods in Applied Mechanics&Engineering,2004,193(17-20):1529-1578.
    [367]谭浩,郑志军,汪海英,夏蒙棼,柯孚久.微纳米尺度下材料性能多尺度模拟方法进展[J].力学进展,2011,41(2):155-171.(Tan H,Zheng Z J,Wang HY,Xia M F,Ke F J.The advance of multi-scale simulation method for materials at nano/micrometer scale[J].Advances in Mechanics,2011,41(2):155-171.(in Chinese))
    [368]Kohlhoff S,Gumbsch P,Fischmeister H F.Crack propagation in b.c.c.crystals studied with a combined finite-element and atomistic model[J].Philosophical Magazine A,1991,64(4):851-878.
    [369]Gumbsch P.An atomistic study of brittle fracture:toward explicit failure criteria from atomistic modeling[J].Journal of Materials Research,1995,10(11):2897-2907.
    [370]Abraham F F,Broughton J Q,Bernstein N,Kaxiras E.Spanning the length scales in dynamic simulation[J].Computers in Physics,1998,12(6):538-546.
    [371]Broughton J Q,Abraham F F,Bernstein N,Kaxiras E.Concurrent coupling of length scales:Methodology and application[J].Physical Review B,1999,60(4):2391-2403.
    [372]Shilkrot L E,Miller R E,Curtin W A.Coupled atomistic and discrete dislocation plasticity[J].Physical Review Letters,2002,89(2):025501.
    [373]Shilkrot L E,Curtin W A,Miller R E.A coupled atomistic/continuum model of defects in solids[J].Journal of the Mechanics and Physics of Solids,2002,50(10):2085-2106.
    [374]Shilkrot L E,Miller R E,Curtin W A.Multiscale plasticity modeling:coupled atomistics and discrete dislocation mechanics[J].Journal of the Mechanics and Physics of Solids,2004,52(4):755-787.
    [375]Chen Y,Liu B,He X,Huang Y,Hwang K.Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites[J].Composites Science and Technology,2010,70(9):1360-1367.
    [376]Tan H,Yang W.Atomistic/continuum simulation of interfacial fracture part I:Atomistic simulation[J].Acta Mechanica Sinica,1994,10(2):150-161.
    [377]Tan H,Yang W.Atomistic/continuum simulation of interfacial fracture--part II:atomistic/dislocation/continuum simulation[J].Acta Mechanica Sinica,1994,10(3):237-249.
    [378]Wagner G J,Liu W K.Coupling of atomistic and continuum simulations using a bridging scale decomposition[J].Journal of Computational Physics,2003,190(1):249-274.
    [379]Kadowaki H,Liu W K.Bridging multi-scale method for localization problems[J].Computer Methods in Applied Mechanics and Engineering,2004,193(30):3267-3302.
    [380]Tang S,Hou T Y,Liu W K.A mathematical framework of the bridging scale method[J].International Journal for Numerical Methods in Engineering,2006,65(10):1688-1713.
    [381]Belytschko T,Xiao S.Coupling methods for continuum model with molecular model[J].International Journal for Multiscale Computational Engineering,2003,1(1):115-126.
    [382]Xiao S P,Belytschko T.A bridging domain method for coupling continua with molecular dynamics[J].Computer Methods in Applied Mechanics and Engineering,2004,193(17):1645-1669.
    [383]Tong Q,Li S.From molecular systems to continuum solids:A multiscale structure and dynamics[J].The Journal of Chemical Physics,2015,143(6):064101.
    [384]Qi T,Shaofan L.A multiscale molecular dynamics allowing macroscale mechanical loads[J].EPL(Europhysics Letters),2015,110(6):60005.
    [385]Tong Q,Li S.Multiscale coupling of molecular dynamics and peridynamics[J].Journal of the Mechanics and Physics of Solids,2016,95(Supplement C):169-187.
    [386]Li S,Tong Q.A concurrent multiscale micromorphic molecular dynamics[J].Journal of Applied Physics,2015,117(15):154303.
    [387]Qian D,Wagner G J,Liu W K.A multiscale projection method for the analysis of carbon nanotubes[J].Computer Methods in Applied Mechanics and Engineering,2004,193(17):1603-1632.
    [388]Tadmor E B,Ortiz M,Phillips R.Quasicontinuum analysis of defects in solids[J].Philosophical Magazine A,1996,73(6):1529-1563.
    [389]Miller R E,Tadmor E B.The quasicontinuum method:Overview,applications and current directions[J].Journal of Computer-Aided Materials Design,2002,9(3):203-239.
    [390]Rudd R E,Broughton J Q.Coarse-grained molecular dynamics and the atomic limit of finite elements[J].Physical Review B,1998,58(10):R5893-R5896.
    [391]Rudd R E,Broughton J Q.Coarse-grained molecular dynamics:Nonlinear finite elements and finite temperature[J].Physical Review B,2005,72(14):144104.
    [392]Wang H,Hu M,Xia M,Ke F,Bai Y.Molecular Statistical Thermodynamics(MST):A Fast Converging Molecular Simulation for Quasi-static Deformation at Finite Temperature[C].The 2nd International Conference on Scientific Computing and Partial Differential Equations&The First East Asia SIAMSymposium,Hong Kong,2005.
    [393]Wang H,Hu M,Xia M,Ke F,Bai Y.Molecular/cluster statistical thermodynamics methods to simulate quasi-static deformations at finite temperature[J].International Journal of Solids and Structures,2008,45(13):3918-3933.
    [394]Knap J,Ortiz M.An analysis of the quasicontinuum method[J].Journal of the Mechanics and Physics of Solids,2001,49(9):1899-1923.
    [395]Tadmor E,Miller R,Phillips R,Ortiz M.Nanoindentation and incipient plasticity[J].Journal of Materials Research,1999,14(6):2233-2250.
    [396]Shenoy V B,Miller R,Tadmor E b,Rodney D,Phillips R,Ortiz M.An adaptive finite element approach to atomic-scale mechanics---the quasicontinuum method[J].Journal of the Mechanics and Physics of Solids,1999,47(3):611-642.
    [397]Hu M,Wang H,Xia M,Ke F,Bai Y.Cluster Statistical Thermodynamics(CST)---to Efficiently Calculate Quasi-static Deformation at Finite Temperature Based on Molecular Potential[C].IUTAM Symposium on Mechanical Behavior and Micro-mechanics of Nanostructured Materials,Springer,2007.
    [398]Curtin W A,Miller R E.Atomistic/continuum coupling in computational materials science[J].Modelling and Simulation in Materials Science and Engineering,2003,11(3):R33-R68.
    [399]Wang J,Xiao P,Zhou M,Wang Z R,Ke F J.Wurtzite-to-tetragonal structure phase transformation and size effect in ZnO nanorods[J].Journal of Applied Physics,2010,107(2):023512.
    [400]E W,Engquist B,Huang Z.Heterogeneous multiscale method:A general methodology for multiscale modeling[J].Physical Review B,2003,67(9):092101.
    [401]Li X,E W.Multiscale modeling of the dynamics of solids at finite temperature[J].Journal of the Mechanics and Physics of Solids,2005,53(7):1650-1685.
    [402]E W,Engquist B,Li X,Ren W,Vanden-Eijnden E.Heterogeneous multiscale methods:A review[J].Communications in Computational Physics,2007,2(3):367-450.
    [403]Chen W,Fish J.A generalized space-time mathematical homogenization theory for bridging atomistic and continuum scales[J].International Journal for Numerical Methods in Engineering,2006,67(2):253-271.
    [404]Fish J,Chen W,Li R.Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions[J].Computer Methods in Applied Mechanics and Engineering,2007,196(4):908-922.
    [405]Xiang M,Cui J,Tian X.A Nonlocal Continuum Model Based on Atomistic Model at Zero Temperature[C].IOP Conference Series:Materials Science and Engineering,IOP Publishing,2010.
    [406]向美珍,崔俊芝,田霞.基于原子模型的非局域连续模型[J].中国科学:物理学,力学和天文学,2011,41(3):292-301.(Xiang M Z,Cui J Z,Tian X.Anonlocal continuum model based on atomistic model[J].Scientia Sinica(Physica,Mechanica&Astronomica),2011,41(3):292-301.(in Chinese))
    [407]Xiang M,Cui J,Li B,Tian X.Atom-continuum coupled model for thermo-mechanical behavior of materials in micro-nano scales[J].Science China Physics,Mechanics and Astronomy,2012,55(6):1125-1137.
    [408]Li B,Cui J,Tian X,Yu X,Xiang M.The calculation of mechanical behavior for metallic devices at nano-scale based on Atomic-Continuum Coupled model[J].Computational Materials Science,2014,94:73-84.
    [409]Han T,Cui J,Yu X,Yang Y.A local Quantum-Atomistic-Continuum model for mechanical behaviors at micro-nano scale[J].Computational Materials Science,2015,109:312-322.
    [410]Yang Y,Cui J,Han T.Error analysis for momentum conservation in Atomic-Continuum Coupled Model[J].Computational Mechanics,2016,58(2):199-211.
    [411]Ryckaert J P,Ciccotti G,Berendsen H J C.Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of nalkanes[J].Journal of Computational Physics,1977,23(3):327-341.
    [412]Streett W B,Tildesley D J,Saville G.Multiple timestep methods in molecular dynamics[J].Molecular Physics,1978,35(3):639-648.
    [413]张田忠,郭万林.分子动力学模拟的冷冻原子法[J].力学学报,2003,35(4):419-424.(Zhang T Z,Guo W L.Freezing atom method for molecular dynamics simulations[J].Acta Mechanica Sinica,2003,35(4):419-424.(in Chinese))
    [414]Chen Y,Liu B,Huang Y,Hwang K.Fracture toughness of carbon nanotube-reinforced metal-and ceramic-matrix composites[J].Journal of Nanomaterials,2011,17:746029.
    [415]Chen Y,Wang S,Liu B,Zhang J.Effects of geometrical and mechanical properties of fiber and matrix on composite fracture toughness[J].Composite Structures,2015,122:496-506.
    [416]Chen Y,Wang Z,Wang S,Zhou Z,Zhang J,Liu B.Carbon nanotube reinforced composites:the smaller diameter,the higher fracture toughness?[J].Journal of Applied Mechanics,2015,82(8):081009.
    [417]Frankland S J V,Harik V M,Odegard G M,Brenner D W,Gates T S.The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation[J].Composites Science and Technology,2003,63(11):1655-1661.
    [418]Georgantzinos S K,Giannopoulos G I,Anifantis NK.Investigation of stress-strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method[J].Theoretical and Applied Fracture Mechanics,2009,52(3):158-164.
    [419]Yang S,Yu S,Kyoung W,Han D S,Cho M.Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections[J].Polymer,2012,53(2):623-633.
    [420]Qian D,Dickey E C,Andrews R,Rantell T.Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J].Applied Physics Letters,2000,76(20):2868-2870.
    [421]Tang L C,Zhang H,Wu X P,Zhang Z.A novel failure analysis of multi-walled carbon nanotubes in epoxy matrix[J].Polymer,2011,52(9):2070-2074.
    [422]Tang L C,Zhang H,Han J H,Wu X P,Zhang Z.Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes[J].Composites Science&Technology,2011,72(1):7-13.
    [423]陈玉丽.碳纳米管复合材料界面的研究[D].清华大学.2008.(Chen Y L.Studies on Interface of Carbon Nanotube Reinforced Composites[D].Tsinghua University,2008.(in Chinese))
    [424]王智勇.碳纳米管纤维型复合材料断裂韧性的研究[D].北京航空航天大学,2017.(Wang Z Y.Study on the Fracture Toughness of CNT/Fiber Reinforced Composites[D].Beihang University,2017.(in Chinese))
    [425]Zhao J,Liu L,Guo Q,Shi J,Zhai G,Song J,Liu Z.Growth of carbon nanotubes on the surface of carbon fibers[J].Carbon,2008,46(2):380-383.
    [426]Chen Y L,Ghosh S.Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading conditions[J].International Journal of Plasticity,2012,32-33:218-247.
    [427]May M,Nossek M,Petrinic N,Hiermaier S,Thoma K.Adaptive multi-scale modeling of high velocity impact on composite panels[J].Composites Part A:Applied Science and Manufacturing,2014,58:56-64.
    [428]Garg M,Abumeri G H,Abdi F.Advanced Multiscale Composites Material Characterization for Fracture Toughness and Impact Resistance Applications[C].51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference18th AIAA/ASME/AHS Adaptive Structures Conference 12th,2010.
    [429]Hur H K,Park J S.Multi-scale Analysis for Orthogonal Fabric Composites Subjected to Ballistic Impact Loading[C].52nd AIAA/ASME/ASCE/AHS/ASCStructures,Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13th,2011.
    [430]Souza F V,Allen D H,Kim Y R.Multiscale model for predicting damage evolution in composites due to impact loading[J].Composites Science and Technology,2008,68(13):2624-2634.
    [431]Gurson A L.Continuum theory of ductile rupture by void nucleation and growth:part I---yield criteria and flow rules for porous ductile media[J].Journal of Engineering Materials and Technology,1977,99(1):2-15.
    [432]Tvergaard V,Needleman A.Analysis of the cupcone fracture in a round tensile bar[J].Acta Metallurgica,1984,32(1):157-169.
    [433]Chu C C,Needleman A.Void nucleation effects in biaxially stretched sheets[J].Journal of Engineering Materials and Technology,1980,102(3):249-256.
    [434]Tvergaard V,Needleman A.Effects of nonlocal damage in porous plastic solids[J].International Journal of Solids and Structures,1995,32(8-9):1063-1077.
    [435]Nahshon K,Hutchinson J W.Modification of the Gurson Model for shear failure[J].European Journal of Mechanics-A/Solids,2008,27(1):1-17.
    [436]Chen Y,Pan F,Guo Z,Liu B,Zhang J.Stiffness threshold of randomly distributed carbon nanotube networks[J].Journal of the Mechanics and Physics of Solids,2015,84:395-423.
    [437]Pan F,Chen Y,Qin Q.Stiffness thresholds of buckypapers under arbitrary loads[J].Mechanics of Materials,2016,96:151-168.
    [438]Zaeri M,Ziaei-Rad S,Vahedi A,Karimzadeh F.Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper[J].Carbon,2010,48(13):3916-3930.
    [439]Berhan L,Yi Y,Sastry A,Munoz E,Selvidge M,Baughman R.Mechanical properties of nanotube sheets:Alterations in joint morphology and achievable moduli in manufacturable materials[J].Journal of Applied Physics,2004,95(8):4335-4345.
    [440]Xie B,Liu Y,Ding Y,Zheng Q,Xu Z.Mechanics of carbon nanotube networks:microstructural evolution and optimal design[J].Soft Matter,2011,7(21):10039-10047.
    [441]Ostanin I,Ballarini R,Potyondy D,DumitricT.Adistinct element method for large scale simulations of carbon nanotube assemblies[J].Journal of the Mechanics and Physics of Solids,2013,61(3):762-782.
    [442]Papanikos P,Nikolopoulos D,Tserpes K.Equivalent beams for carbon nanotubes[J].Computational Materials Science,2008,43(2):345-352.
    [443]Wang X Y,Wang X.Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment[J].Composites Part B:Engineering,2004,35(2):79-86.
    [444]Wang X,Wang X Y,Xiao J.A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations[J].Composite Structures,2005,69(3):315-321.
    [445]Hall L J,Coluci V R,Galv2o D S,Kozlov M E,Zhang M,Dantas S O,Baughman R H.Sign change of Poisson's ratio for carbon nanotube sheets[J].Science,2008,320(5875):504-507.
    [446]陈玉丽,刘彬,黄永刚.具有分形特征的碳纳米管束的储氢性能研究[J].工程力学,2009,26(10):14-22.(Chen Y L,Liu B,Huang Y G.Fractal mechanics of hydrogen storage in the bundle of carbon nanotubes[J].Engineering Mechanics,2009,26(10):14-22.(in Chinese))
    [447]Yin Y J,Chen Y L,Yin J,Huang K Z.Geometric conservation laws for perfect Y-branched carbon nanotubes[J].Nanotechnology,2006,17(19):4941-4945.
    [448]Li Y,Qiu X,Yang F,Wang X S,Yin Y,Fan Q.Chirality independence in critical buckling forces of super carbon nanotubes[J].Solid State Communications,2008,148(1):63-68.
    [449]Yin Y,Chen Y,Yin J,Huang K.Geometric conservation laws for perfect Y-branched carbon nanotubes[J].Nanotechnology,2006,17(19):4941.
    [450]Coluci V R,Galv2o D S,Jorio A.Geometric and electronic structure of carbon nanotube networks:'super'-carbon nanotubes[J].Nanotechnology,2006,17(3):617.
    [451]Qin Z,Feng X Q,Zou J,Yin Y,Yu S W.Superior flexibility of super carbon nanotubes:Molecular dynamics simulations[J].Applied Physics Letters,2007,91(4):043108.
    [452]Chen Y,Yin Y,Huang Y,Hwang K.Atomistic simulations of the nonlinear deformation and damage modes of super carbon nanotubes[J].Journal of Computational and Theoretical Nanoscience,2009,6(1):41-45.
    [453]Wang M,Qiu X,Zhang X.Mechanical properties of super honeycomb structures based on carbon nanotubes[J].Nanotechnology,2007,18(7):075711.
    [454]Tserpes K I,Papanikos P.Continuum modeling of carbon nanotube-based super-structures[J].Composite Structures,2009,91(2):131-137.
    [455]Dillon A C,Jones K M,Bekkedahl T A,Kiang C H,Bethune D S,Heben M J.Storage of hydrogen in single-walled carbon nanotubes[J].Nature,1997,386(6623):377-379.
    [456]Liu C,Fan Y Y,Liu M,Cong H T,Cheng H M,Dresselhaus M S.Hydrogen storage in single-walled carbon nanotubes at room temperature[J].Science,1999,286(5442):1127-1129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700