表面织构与复合板联合轧制成形的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Microstructure and Composite Plate Forming
  • 作者:陈嘉伟 ; 欧阳柳 ; 文宇 ; 胡志清 ; 颜婷婷
  • 英文作者:CHEN Jia-wei;OUYANG Liu;WEN Yu;HU Zhi-qing;YAN Ting-ting;College of Materials Science and Engineering, Jilin University;Roll Forging Research Institute, Jilin University;
  • 关键词:复合板 ; 轧制复合 ; 微结构 ; 数值模拟
  • 英文关键词:composite plate;;rolling cladding;;microstructure;;numerical simulation
  • 中文刊名:JMCX
  • 英文刊名:Journal of Netshape Forming Engineering
  • 机构:吉林大学材料科学与工程学院;吉林大学辊锻工艺研究所;
  • 出版日期:2019-07-10
  • 出版单位:精密成形工程
  • 年:2019
  • 期:v.11;No.61
  • 基金:国家自然科学基金(51275201,51311130129);; 吉林大学“大学生创新训练”校级项目(2018B1629)
  • 语种:中文;
  • 页:JMCX201904019
  • 页数:6
  • CN:04
  • ISSN:50-1199/TB
  • 分类号:140-145
摘要
目的研究结合界面带微织构的复合板的轧制成形过程。方法基于Deform软件,以CDA-377铜和1100铝复合板为研究对象,模拟铜板表面微织构加工过程以及带微沟槽的铜板与铝板的轧制复合过程,分析整个轧制复合过程中轧制力的变化规律,然后在复合板稳定轧制过程中对板料金属单元进行样点追踪以及应力分析,最后以铝板温度、压下率为变量,分析铝板温度、压下率对稳定轧制阶段轧制力的影响。结果通过改变铝板温度和压下率进行多次模拟,发现铝板温度为200℃,压下率为25%时,在整个复合轧制过程中,咬入阶段轧制力先上升到最大值608 N,随后下降并稳定在366 N左右,并进入稳定轧制阶段;在稳定轧制过程中,铝板基层和凹陷层的应力变化规律基本一致,应变主要集中在铝板一侧;随着铝板温度升高、压下率降低,稳定轧制阶段的轧制力呈下降趋势。结论微织构复合板轧制过程中轧制力的变化规律、稳定轧制状态下的轧制力受温度和压下率影响的机理与普通复合板基本一致,而稳定轧制状态下结合界面的应力变化规律与微织构相关。
        This paper aims to study on the roll forming process of composite plate with microstructure preprocessed at its bonding interface. Brass-cda-377 copper and aluminum-1100 composite board were taken as research objectives based on the software Deform. The microstructure processing of brass surface and the roll forming process of brass/aluminum composite plate were simulated. Then, the trend of the rolling force in the process of composite roll forming was analyzed and several sampling points were taken out to study its stress during the stable rolling stage. Finally, influences of the temperature of the aluminum plate and the reduction rate on the rolling force in the stable roll forming stage were analyzed through several simulations by changing the temperature of the aluminum plate and the reduction rate. In the whole rolling process, when the temperature of the aluminum plate and the reduction rate were 200 ℃ and 25% respectively, the rolling force was risen up to maximum value 608 N and then was decreased and stabilized at 366 N till the end. The trend of the stress at the upper and lower part of the aluminum plate was alike during the stable stage. And the strain was concentrated on the aluminum plate. With the increase of the temperature of aluminum and lower reduction rate, the force of rolling forming went down. The trend of the rolling force and affected factors of composite plate with microstructure is basically the same as those of common composite plate; while the stress at the bonding interface was highly related to the microstructure and the change rule of stress on the bonding interface.
引文
[1]史豪杰,丁旭,罗海龙,等.异种有色金属复合板制备技术的研究进展[J].热加工工艺,2019,48(6):1-5.SHI Hao-jie,DING Xu,LUO Hai-long,et al.Research Progress of Preparation Technology of Heterogeneous Nonferrous Metal Composite Plate[J].Hot Working Technology,2019,48(6):1-5.
    [2]于宝义,齐克敏.两种铜合金复合板带室温轧制成形工艺及结合机制的研究[J].精密成形工程,2001,(5):11-16.YU Bao-yi,QI Ke-min.The Study of Copper Alloy Cladding Sheet of the Compound Technology and Bond Mechanism[J].Journal of Netshape Forming Engineering,2001(5):11-16.
    [3]张大伟,赵升吨,王利民.复杂型面滚轧成形设备现状分析[J].精密成形工程,2019,11(1):1-10.ZHANG Da-wei,ZHAO Sheng-dun,WANG Li-min.Current Status of Rolling Forming Machine for Complex Profile[J].Journal of Netshape Forming Engineering,2019,11(1):1-10.
    [4]田捍卫,王爱琴,谢敬佩,等.铜铝复合板铸轧工艺优化及实验分析[J].材料导报,2019,33(10):1706-1711.TIAN Han-wei,WANG Ai-qin,XIE Jing-pei,et al.Optimization of Cast-Rolling Process of Copper Aluminum Composite Plate and Experimental Analysis[J].Materials Reports,2019,33(10):1706-1711.
    [5]张平,张元好,常庆明.双金属复合导板的研究与发展现状[J].铸造设备与工艺,2011,40(12):107-110.ZHANG Ping,ZHANG Yuan-hao,CHANG Qing-ming.Current Development and Research of Bimetal Clad Plate[J].Foundry Equipment&Technology,2011,40(12):107-110.
    [6]刘帅洋,王爱琴,吕世敬,等.铜铝层状复合材料界面特性及深加工研究进展[J].科学导报,2018,32(5):828-835.LIU Shuai-yang,WANG Ai-qin,LYU Shi-jing,et al.Interfacial Properties and Further Processing of Cu/Al Laminated Composite:a Review[J].Materials Reports,2018,32(5):828-835.
    [7]祖国胤,李小兵,于明明,等.异步轧制铜/铝双金属复合板变形行为的研究[J].东北大学学报(自然科学版),2011,32(5):675-678.ZU Guo-yin,LI Xiao-bing,YU Ming-ming,et al.Investigating Deformation Behavior of Asymmetrically Rolled Cu/Al Bimetal Clad Sheets[J].Journal of Northeastern University(Natural Science),2011,32(5):675-678.
    [8]MILLER W S,ZHUANG L,BOTTEMA J,et al.Recent Development in Aluminium Alloys for the Automotive Industry[J].Materials Science and Engineering:A,2000,280(1):37-49.
    [9]严操,兰占军,廉洋子,等.铜铝复合材料制备工艺方法发展综述[J].世界有色金属,2018(18):158-159.YAN Cao,LAN Zhan-jun,LIAN Yang-zi,et al.Development of Preparation Technology of Cu Al Composites[J].World Nonferrous Metals,2018(18):158-159.
    [10]REINCKE T,KRELING S,DILGER K.Roll Forming for Multi-material Composites[C]//SAMPE Long Beach 2016Conference and Exhibition,Los Angeles,2016.
    [11]李龙,刘会云,张心金,等.金属复合板表面处理技术的研究现状及发展[J].表面技术,2012,41(5):124-127.LI Long,LIU Hui-yun,ZHANG Xin-jin,et al.Research Status and Progress on Surface Preparation of Clad Metal Plates[J].Surface Technology,2012,41(5):124-127.
    [12]曾健.内凹孔阵列微沟槽式铝均热板制造与性能表征[D].广州:华南理工大学,2017.ZENG Jian.Fabrication and Characterization of Aluminum Vapor Chamber Using Micro-grooved Wick with Reentrant Cavity Array[D].Guangzhou:South China University of Technology,2017.
    [13]胡志清,王博,王伟,等.辊压成形板材表面微结构数值模拟研究[J].锻压技术,2014,39(2):63-67.HU Zhi-qing,WANG Bo,WANG Wei,et al.Numerical Simulation of Microstructure on Surface of Roll Forming Sheet[J].Forging&Stamping Technology,2014,39(2):63-67.
    [14]刘子健,赵红阳,胡小东,等.轧制温度和轧制方式对镁铝复合板组织性能的影响[J].轻金属,2015(10):55-58.LIU Zi-jian,ZHAO Hong-yang,HU Xiao-dong,et al.Effects of Rolling Temperature and Method on the Microstructure and Performance of Mg-Al Clad Sheets[J].Light Metals,2015(10):55-58.
    [15]袁武华,周静.退火温度对铜/铝复合板剥离性能的影响[J].湖南大学学报(自然科学学报),2014,41(12):1-5.YUAN Wu-hua,ZHOU Jing.Effects of Annealing Temperature on Peeling Properties Development of Cu/Al Bi-metal Plates[J].Journal of Hunan University(Natural Sciences),2014,41(12):1-5.
    [16]SHIN H W,LEE H S,JUNG S B.Analysis of Peel Strength of Consisting of an Aluminum Sheet,Anodic Aluminum Oxide and a Copper Foil Laminate Composite[J].Metals and Materials International,2017,23(1):207-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700