Fischer图解及其在塔里木盆地巴楚地区早奥陶世海平面变化中的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fischer Plot and Its Response to the Changes of the Early Ordovician Sea in the Bachu Area,Tarim Basin
  • 作者:胡晓贤 ; 樊太亮 ; 高志前 ; 吴鹏
  • 英文作者:Hu Xiaoxian;Fan Tailiang;Gao Zhiqian;Wu Peng;China United Coalbed Methane Corporation Ltd.;School of Energy Resources,China University of Geosciences(Beijing);The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism of the Ministry of Education,China University of Geosciences(Beijing);
  • 关键词:米兰科维奇旋回 ; 巴楚地区 ; 早奥陶世 ; Fischer图解 ; 海平面变化
  • 英文关键词:Milankovitch cycle;;Bachu area;;Early Ordovician;;Fischer plot;;sea-level change
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中联煤层气有限责任公司;中国地质大学(北京)能源学院;中国地质大学(北京)海相储层演化与富集机理教育部重点实验室;
  • 出版日期:2018-01-15
  • 出版单位:地质科技情报
  • 年:2018
  • 期:v.37;No.178
  • 基金:国家自然科学基金项目(51574208);; 中科院A类先导项目(XDZ14010201-02);; 中央高校基本业务费项目(2-9-2015-141)
  • 语种:中文;
  • 页:DZKQ201801012
  • 页数:8
  • CN:01
  • ISSN:42-1240/P
  • 分类号:94-101
摘要
基于典型露头、钻测井及地震资料,利用自然伽马测井曲线做出Fischer图解,可识别出具有米兰科维奇旋回特征的高频旋回,旨在分析塔里木盆地巴楚地区早奥陶世的相对海平面变化。对和田1井下奥陶统蓬莱坝组的自然伽马测井曲线进行了预处理和计算,共识别出103个米兰科维奇旋回,并做出Fischer图解。结果表明,下奥陶统蓬莱坝组发育1个Ⅲ级层序,7个Ⅳ级层序和28个Ⅴ级层序,反映塔里木盆地巴楚地区的海平面在早奥陶世呈现出无明显变化-快速上升-迅速下降的相对变化趋势,其结果与柯坪地区野外露头碳、氧同位素曲线指示的相对海平面变化有很好的一致性,说明Fischer图解有很强的适用性,对今后塔里木盆地相对海平面变化的研究有一定指导意义。
        Based on the typical outcrops,and drilling,logging and seismic data,this paper uses gamma ray log data for Fischer plot to identify the high frequency cycles with the Milankovitch cycle characteristics in order to analyze the Early Ordovician relative sea-level change of Tarim Basin.The Bachu Uplift,located in the western border of Tazhong area in Tarim Basin,contains a large number of borehole data.High-frequency sedimentary cycles are well developed in the Lower Ordovician Penglaiba Formation in these boreholes.Well Hetian1 is selected for pretreating and calculating its gamma ray log data of Penglaiba Formation.The calculated results show that there are 103 Milankovitch cycles developed from the bottom to the top of the Lower Ordovician Penglaiba Formation in Well Hetian1.The cycle thickness varies from 2.7 to9.4 m,with an average 5.2 m.In the Early Ordovician,a stable carbonate platform sedimentary developed in the Bachu Uplift,whose tectonic subsidence rate could be assumed as linear variation.Based on these data above,a Fischer plot is made with the number of the cycles as abscissa and average cumulative thickness as ordinate.The result suggests that there are 1 third-order sequence,7 fourth-order sequences and28 fifth-order sequences in the Lower Ordovician Penglaiba Formation.This shows that,the relative sea level in Bachu area of Tarim Basin had no significant change at first,then rose rapidly and finally declined quickly during the Early Ordovician.The maximum flooding surface occurred in the middle of the fifth four-order cycle.These results are insistent with those reflected by the C-O isotope of Penglaiba Formation,suggesting that Fischer plot is very applicable for studying the relative sea-level change in Tarim Basin in future.
引文
[1]Fischer A G.The lofter cyclothems of the Alpine Triassic[J].Kansas Geological Survey Bulletin,1964,169(1):107-149.
    [2]孙阳,樊太亮,傅良同,等.大庆长垣姚家组高频层序地层与米兰科维奇旋回对应性[J].现代地质,2011,25(6):1145-1166.
    [3]Olsen P E,Kent D V.Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behaviour of the planets[J].Philosophical Transactions of the Royal Society of London,1999,357:1761-1786.
    [4]郭少斌,陈成龙.利用米兰科维奇旋回划分柴达木盆地第四系层序地层[J].地质科技情报,2007,26(4):27-30.
    [5]Goldhammer R K,Dunn P A,Hardie I A.High frequency glacio-eustaticsea-level oscillations Milankovitch characteristics recorded Middle Triassic platform carbonates Northern Italy[J].American Journal of Science,1987,287(9):853-892.
    [6]Gale A S,Hardenbol J,Hathway B,et al.Global correlation of Cenomanian(Upper Cretaceous)sequences:Evidence for Milankovitch control on sea level[J].Geology,2002,30(4):291-294.
    [7]梅冥相,马永生,高金汉,等.滇黔桂盆地及其邻区晚古生代层序地层格架及相对海平面变化[J].现代地质,2002,16(4):365-373.
    [8]彭博,李国蓉,沈忠民,等.四川元坝地区长兴组层序地层特征及Fischer图解[J].地层学杂志,2013,37(1):112-120.
    [9]梅冥相,马永生,周洪瑞,等.雾迷山旋回层的费希尔图解及其在定义前寒武纪三级海平面变化中的应用[J].地球学报,2001,22(5):429-436.
    [10]Davydov V I,Crowley J L,Schmitz M D,et al.High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin,eastern Ukraine[J].Geochemistry Geophysics Geosystems,2010,11(2):1448-1470.
    [11]Shu L S,Deng X L,Zhu W B,et al.Precambrian tectonic evolution of the Tarim Block,NW China:New geochronological insights from the Quruqtagh domain[J].Journal of Asian Earth Sciences,2011,42(5):774-790.
    [12]高志前,樊太亮,李岩,等.塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J].吉林大学学报:地球科学版,2006,36(4):549-556.
    [13]张惠良,张荣虎,陆俊明,等.塔里木盆地麦盖提斜坡西段石炭系生屑灰岩段旋回划分及意义[J].地层学杂志,2008,32(1):91-98.
    [14]Zhang Y,Chen D,Zhou X,et al.Depositional facies and stratal cyclicity of dolomites in the Lower Qiulitag Group(Upper Cambrian)in northwestern Tarim Basin,NW China[J].Facies,2015,61(1):1-24.
    [15]贺勇,黄擎宇,谢世文,等.塔里木盆下奥陶统蓬莱坝组沉积相特征[J].新疆地质,2011,29(3):306-310.
    [16]Sarg J F,Markello J R,Weber L J.The second-order cycle,carbonate-platform growth,and reservoir,source,and trap prediction[J].Special Publications,1999,81(1):11-34.
    [17]Mail A D.Principles of sedimentary basin analysis[M].Berlin:Springer Verlag,2000:1-616.
    [18]赵宗举,潘文庆,张丽娟,等.塔里木盆地奥陶系层序地层格架[J].大地构造与成矿学,2009,33(1):175-188.
    [19]赵宗举.全球海平面变化指标及海相构造层序研究方法:以塔里木盆地奥陶系为例[J].石油学报,2015,36(3):262-273.
    [20]International Commission on Stratigrphy.International Stratigraphic Chart 2017[EB/OL].(2017-02)[2017-09-23].http://www.stratigraphy.org/ICSchart/ChronostratChart2017-02.pdf
    [21]胡晓兰,樊太亮,于炳松,等.塔里木盆地柯坪地区奥陶系鹰山组台内滩储层地层特征对比研究:以石灰窑和大湾沟剖面为例[J].地学前缘,2011,18(3):339-346.
    [22]Goff J L,Cerepi A,Ghysels G,et al.Meter-scale cycles as a proxy for the evolution of the Apulian carbonate platform during the Late Cretaceous(Llogara Pass,Albania)[J].Facies,2015,61(21):1-26.
    [23]Tian S,Chen Z Q,Huang C.Orbital forcing and sea-level changes in the Earliest Triassic of the Meishan Section,South China[J].Journal of Earth Science,2014,25(1):64-73.
    [24]Carpentier C,Lathuilière B,Ferry S.Sequential and climatic framework of the growth and demise of a carbonate platform:Implications for the peritidal cycles(Late Jurassic,North-eastern France)[J].Sedimentology,2010,57(4):985-1020.
    [25]吴峰,郭来源,张道军,等.基于高精度岩心扫描元素数据的高频层序划分:以西科1井第四系生物礁滩体系为例[J].地质科技情报,2016,35(5):42-51.
    [26]Osleger D A,Read J F.Relation of eustasy to stacking patterns of meter scale carbonate cycles,Late Cambrian,USA[J].Journal of Sedimentary Petrology,1991,61(7):1225-1252.
    [27]Scholle P A,James N P,Read J F.Carbonate sedimentology and petrology[M].America:American Geophysical Union,2013.
    [28]Koerschner W F I,Read J F.Field and modelling studies of Cambrian carbonate cycles,Virginia Appalachians[J].SEPM Journal of Sedimentary Research,1989,60(5):654-687.
    [29]Montanez I P,Read J F.Eustatic control on early dolomitization of cyclic peritidal carbonates:Evidence from the early Ordovician Upper Knox Group,Appalachians[J].Geological Society of America Bulletin,1992,104(7):872-886.
    [30]Sadler P M,Strauss D J.Estimation of the completeness of stratigraphical sections using empirical data and theoretical models[J].Journal of Geological Society of London,1990,147(3):471-485.
    [31]Sadler P M,Osleger D A,Montanez L P.On the labeling,length,and objective basis of Fischer plots[J].Journal of Sedimentary Petrology,1993,63(3):360-368.
    [32]Chen D,Tucker M E,Jiang M,et al.Long-distance correlation between tectonic-controlled,isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China[J].Sedimentology,2001,48(1):57-78.
    [33]王传尚,李旭兵,刘安,等.华南埃迪卡拉系斜坡相带碳稳定同位素特征[J].地质科技情报,2014,33(4):1-5,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700