脊髓损伤后针对皮质脊髓束的综合治疗策略(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury
  • 作者:An-kai ; XU ; Zhe ; GONG ; Yu-zhe ; HE ; Kai-shun ; XIA ; Hui-min ; TAO
  • 英文作者:An-kai XU;Zhe GONG;Yu-zhe HE;Kai-shun XIA;Hui-min TAO;Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University;Orthopedics Research Institute of Zhejiang University;
  • 关键词:脊髓损伤 ; 综合策略 ; 皮质脊髓束 ; 神经保护 ; 发育学 ; 神经胶质细胞 ; 移植 ; 康复训练 ; 电刺激
  • 英文关键词:Spinal cord injury (SCI);;Comprehensive strategy;;Corticospinal tract;;Neuroprotective;;Development;;Glial;;Transplantation;;Training;;Electrical stimulation
  • 中文刊名:ZDYW
  • 英文刊名:浙江大学学报B辑(生物医学与生物技术)(英文版)
  • 机构:Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University;Orthopedics Research Institute of Zhejiang University;
  • 出版日期:2019-03-03
  • 出版单位:Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)
  • 年:2019
  • 期:v.20
  • 基金:Project supported by the National Natural Science Foundation of China(Nos.81472504,81401822,and 81572177);; the Science and Technology Foundation of Zhejiang Province(No.2016C33151);; the Medical Science and Technology Project of Zhejiang Province of China(Nos.2016146428,2016KYA096,and 2017KY071);; the Zhejiang Provincial Natural Science Foundation of China(Nos.Y17H160033,LQ14H060002,and LY14H060004)
  • 语种:英文;
  • 页:ZDYW201903001
  • 页数:14
  • CN:03
  • ISSN:33-1356/Q
  • 分类号:5-18
摘要
本文根据脊髓不同传导束之间存在竞争以及其再生需要的条件存在异质性,得出优先关注皮质脊髓束的结论。同时,旨在通过归纳目前治疗脊髓损伤(特别是对皮质脊髓束)有效的各种策略,寻找治疗脊髓损伤的最佳策略组合。脊髓损伤的恢复涉及众多方面的问题,单一策略的失效(如本文提及的SOX11的过度表达反而对功能有害)往往提示治疗方案需要综合其它方面的问题。因此,有必要总结一下脊髓损伤治疗的几个关键方面,并梳理一套可能的治疗路线规划。本文另一目的在于对过去一些关键理论、假说、矛盾进行总结,并在此基础上进行新的综合和思考。
        Spinal cord injury(SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract(CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches:(1) tackle more extensive regions;(2) provide a regenerative microenvironment;(3) provide a glial microenvironment;(4) transplantation; and(5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.
引文
Ahuja CS,Nori S,Tetreault L,et al.,2017.Traumatic spinal cord injury-repair and regeneration.Neurosurgery,80(3S):S9-S22.https://doi.org/10.1093/neuros/nyw080
    Anderson MA,Burda JE,Ren Y,et al.,2016.Astrocyte scar formation aids central nervous system axon regeneration.Nature,532(7598):195-200.https://doi.org/10.1038/nature17623
    Arbo BD,Benetti F,Ribeiro MF,2016.Astrocytes as a target for neuroprotection:modulation by progesterone and dehydroepiandrosterone.Prog Neurobiol,144:27-47.https://doi.org/10.1016/j.pneurobio.2016.03.010
    Aridas JDS,Yawno T,Sutherland AE,et al.,2018.Systemic and transdermal melatonin administration prevents neuropathology in response to perinatal asphyxia in newborn lambs.J Pineal Res,64(4):e12479.https://doi.org/10.1111/jpi.12479
    Assinck P,Duncan GJ,Hilton BJ,et al.,2017.Cell transplantation therapy for spinal cord injury.Nat Neurosci,20(5):637-647.https://doi.org/10.1038/nn.4541
    Bareyre FM,Kerschensteiner M,Raineteau O,et al.,2004.The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.Nat Neurosci,7(3):269-277.https://doi.org/10.1038/nn1195
    Baumbauer KM,Huie JR,Hughes AJ,et al.,2009.Timing in the absence of supraspinal input II:regularly spaced stimulation induces a lasting alteration in spinal function that depends on the NMDA receptor,BDNF release,and protein synthesis.J Neurosci,29(46):14383-14393.https://doi.org/10.1523/JNEUROSCI.3583-09.2009
    Baumgart EV,Barbosa JS,Bally-Cuif L,et al.,2012.Stab wound injury of the zebrafish telencephalon:a model for comparative analysis of reactive gliosis.Glia,60(3):343-357.https://doi.org/10.1002/glia.22269
    Becker T,Wullimann MF,Becker CG,et al.,1997.Axonal regrowth after spinal cord transection in adult zebrafish.J Comp Neurol,377(4):577-595.https://doi.org/10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-#
    Becker T,Bernhardt RR,Reinhard E,et al.,1998.Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules.J Neurosci,18(15):5789-5803.https://doi.org/10.1523/JNEUROSCI.18-15-05789.1998
    Blackmore MG,Wang ZM,Lerch JK,et al.,2012.Krüppellike Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract.Proc Natl Acad Sci USA,109(19):7517-7522.https://doi.org/10.1073/pnas.1120684109
    Boato F,Hendrix S,Huelsenbeck SC,et al.,2010.C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts.J Cell Sci,123:1652-1662.https://doi.org/10.1242/jcs.066050
    Briona LK,Poulain FE,Mosimann C,et al.,2015.Wnt/?-catenin signaling is required for radial glial neurogenesis following spinal cord injury.Dev Biol,403(1):15-21.https://doi.org/10.1016/j.ydbio.2015.03.025
    Carloni S,Riparini G,Buonocore G,et al.,2017.Rapid modulation of the silent information regulator 1 by melatonin after hypoxia-ischemia in the neonatal rat brain.J Pineal Res,63(3):e12434.https://doi.org/10.1111/jpi.12434
    Chanas-Sacre G,Rogister B,Moonen G,et al.,2000.Radial glia phenotype:origin,regulation,and transdifferentiation.J Neurosci Res,61(4):357-363.https://doi.org/10.1002/1097-4547(20000815)61:4<357::AID-JNR1>3.0.CO;2-7
    Chen A,Kumar SM,Sahley CL,et al.,2000.Nitric oxide influences injury-induced microglial migration and accumulation in the leech CNS.J Neurosci,20(3):1036-1043.https://doi.org/10.1523/JNEUROSCI.20-03-01036.2000
    Cheng X,Zheng Y,Bu P,et al.,2018.Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury.Exp Neurol,299:97-108.https://doi.org/10.1016/j.expneurol.2017.10.014
    Colon JM,Torrado AI,Cajigasá,et al.,2016.Tamoxifen administration immediately or 24 hours after spinal cord injury improves locomotor recovery and reduces secondary damage in female rats.J Neurotraum,33(18):1696-1708.https://doi.org/10.1089/neu.2015.4111
    Darian-Smith C,Lilak A,Garner J,et al.,2014.Corticospinal sprouting differs according to spinal injury location and cortical origin in macaque monkeys.J Neurosci,34(37):12267-12279.https://doi.org/10.1523/JNEUROSCI.1593-14.2014
    Ding Y,Yan Q,Ruan JW,et al.,2011.Bone marrow mesenchymal stem cells and electroacupuncture downregulate the inhibitor molecules and promote the axonal regeneration in the transected spinal cord of rats.Cell Transplant,20(4):475-491.https://doi.org/10.3727/096368910X528102
    Dittrich F,Ramenda C,Grillitsch D,et al.,2014.Regulatory mechanisms of testosterone-stimulated song in the sensorimotor nucleus HVC of female songbirds.BMC Neurosci,15:128.https://doi.org/10.1186/s12868-014-0128-0
    Donnelly DJ,Popovich PG,2008.Inflammation and its role in neuroprotection,axonal regeneration and functional recovery after spinal cord injury.Exp Neurol,209(2):378-388.https://doi.org/10.1016/j.expneurol.2007.06.009
    Elkabes S,Nicot AB,2014.Sex steroids and neuroprotection in spinal cord injury:a review of preclinical investigations.Exp Neurol,259:28-37.https://doi.org/10.1016/j.expneurol.2014.01.008
    Ewan EE,Hagg T,2016.Intrathecal acetyl-L-carnitine protects tissue and improves function after a mild contusive spinal cord injury in rats.J Neurotrauma,33(3):269-277.https://doi.org/10.1089/neu.2015.4030
    Facchiano F,Fernandez E,Mancarella S,et al.,2002.Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor.J Neurosurg,97(1):161-168.https://doi.org/10.3171/jns.2002.97.1.0161
    Faden AI,Wu J,Stoica BA,et al.,2016.Progressive inflammationmediated neurodegeneration after traumatic brain or spinal cord injury.Br J Pharmacol,173(4):681-691.https://doi.org/10.1111/bph.13179
    Fan H,Zhang K,Shan LQ,et al.,2016.Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury.Mol Neurodegener,11:14.https://doi.org/10.1186/s13024-016-0081-8
    Fan J,Xiao ZF,Zhang HT,et al.,2010.Linear ordered collagen scaffolds loaded with collagen-binding neurotrophin-3promote axonal regeneration and partial functional recovery after complete spinal cord transection.J Neurotrauma,27(9):1671-1683.https://doi.org/10.1089/neu.2010.1281
    Fernández-López B,Valle-Maroto SM,Barreiro-Iglesias A,et al.,2014.Neuronal release and successful astrocyte uptake of aminoacidergic neurotransmitters after spinal cord injury in lampreys.Glia,62(8):1254-1269.https://doi.org/10.1002/glia.22678
    Floriddia EM,Rathore KI,Tedeschi A,et al.,2012.p53regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.J Neurosci,32(40):13956-13970.https://doi.org/10.1523/JNEUROSCI.1925-12.2012
    Fortun J,Puzis R,Pearse DD,et al.,2009.Muscle injection of AAV-NT3 promotes anatomical reorganization of CSTaxons and improves behavioral outcome following SCI.J Neurotrauma,26(7):941-953.https://doi.org/10.1089/neu.2008.0807
    Fouad K,Pedersen V,Schwab ME,et al.,2001.Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses.Curr Biol,11(22):1766-1770.https://doi.org/10.1016/S0960-9822(01)00535-8
    Fournier AE,Takizawa BT,Strittmatter SM,2003.Rho kinase inhibition enhances axonal regeneration in the injured CNS.J Neurosci,23(4):1416-1423.https://doi.org/10.1523/JNEUROSCI.23-04-01416.2003
    Fünfschilling U,Supplie LM,Mahad D,et al.,2012.Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity.Nature,485(7399):517-521.https://doi.org/10.1038/nature11007
    Gazula VR,Roberts M,Luzzio C,et al.,2004.Effects of limb exercise after spinal cord injury on motor neuron dendrite structure.J Comp Neurol,476(2):130-145.https://doi.org/10.1002/cne.20204
    Gensel JC,Zhang B,2015.Macrophage activation and its role in repair and pathology after spinal cord injury.Brain Res,1619:1-11.https://doi.org/10.1016/j.brainres.2014.12.045
    Geoffroy CG,Hilton BJ,Tetzlaff W,et al.,2016.Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system.Cell Rep,15(2):238-246.https://doi.org/10.1016/j.celrep.2016.03.028
    Gilbert EAB,Vickaryous MK,2018.Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko(Eublepharis macularius).J Comp Neurol,526(2):285-309.https://doi.org/10.1002/cne.24335
    Golabchi A,Wu BC,Li X,et al.,2018.Melatonin improves quality and longevity of chronic neural recording.Biomaterials,180:225-239.https://doi.org/10.1016/j.biomaterials.2018.07.026
    Grandel H,Brand M,2013.Comparative aspects of adult neural stem cell activity in vertebrates.Dev Genes Evol,223(1-2):131-147.https://doi.org/10.1007/s00427-012-0425-5
    Hagg T,Baker KA,Emsley JG,et al.,2005.Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats.Neuroscience,130(4):875-887.https://doi.org/10.1016/j.neuroscience.2004.10.018
    Hains BC,Black JA,Waxman SG,2003.Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury.J Comp Neurol,462(3):328-341.https://doi.org/10.1002/cne.10733
    Hansen DV,Lui JH,Parker PR,et al.,2010.Neurogenic radial glia in the outer subventricular zone of human neocortex.Nature,464(7288):554-561.https://doi.org/10.1038/nature08845
    Hornedo-Ortega R,Da Costa G,Cerezo AB,et al.,2018.In vitro effects of serotonin,melatonin,and other related indole compounds on amyloid-βkinetics and neuroprotection.Mol Nutr Food Res,62(3):1700383.https://doi.org/10.1002/mnfr.201700383
    Jacquet BV,Salinas-Mondragon R,Liang HX,et al.,2009.FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain.Development,136(23):4021-4031.https://doi.org/10.1242/dev.041129
    Jiang YQ,Zaaimi B,Martin JH,2016.Competition with primary sensory afferents drives remodeling of corticospinal axons in mature spinal motor circuits.J Neurosci,36(1):193-203.https://doi.org/10.1523/JNEUROSCI.3441-15.2016
    Kadoya K,Lu P,Nguyen K,et al.,2016.Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration.Nat Med,22(5):479-487.https://doi.org/10.1038/nm.4066
    Kanagal SG,Muir GD,2009.Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.Exp Neurol,216(1):193-206.https://doi.org/10.1016/j.expneurol.2008.11.028
    Karimi-Abdolrezaee S,Billakanti R,2012.Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects.Mol Neurobiol,46(2):251-264.https://doi.org/10.1007/s12035-012-8287-4
    Kim BG,Dai HN,McAtee M,et al.,2006.Remodeling of synaptic structures in the motor cortex following spinal cord injury.Exp Neurol,198(2):401-415.https://doi.org/10.1016/j.expneurol.2005.12.010
    Kim BG,Dai HN,McAtee M,et al.,2008.Modulation of dendritic spine remodeling in the motor cortex following spinal cord injury:effects of environmental enrichment and combinatorial treatment with transplants and neurotrophin-3.J Comp Neurol,508(3):473-486.https://doi.org/10.1002/cne.21686
    Krajacic A,Weishaupt N,Girgis J,et al.,2010.Traininginduced plasticity in rats with cervical spinal cord injury:effects and side effects.Behav Brain Res,214(2):323-331.https://doi.org/10.1016/j.bbr.2010.05.053
    Kroehne V,Freudenreich D,Hans S,et al.,2011.Regeneration of the adult zebrafish brain from neurogenic radial gliatype progenitors.Development,138(22):4831-4841.https://doi.org/10.1242/dev.072587
    Kuhlengel KR,Bunge MB,Bunge RP,et al.,1990.Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord.II.Implant characteristics and examination of corticospinal tract growth.J Comp Neurol,293(1):74-91.https://doi.org/10.1002/cne.902930107
    Lang C,Bradley PM,Jacobi A,et al.,2013.STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury.EMBO Rep,14(10):931-937.https://doi.org/10.1038/embor.2013.117
    Larco DO,Bauman BM,Cho-Clark M,et al.,2018.GnRH-(1-5)inhibits TGF-βsignaling to regulate the migration of immortalized gonadotropin-releasing hormone neurons.Front Endocrinol(Lausanne),9:45.https://doi.org/10.3389/fendo.2018.00045
    Lewandowski G,Steward O,2014.AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury.JNeurosci,34(30):9951-9962.https://doi.org/10.1523/JNEUROSCI.1996-14.2014
    Li H,Ham TR,Neill N,et al.,2016.A hydrogel bridge incorporating immobilized growth factors and neural stem/progenitor cells to treat spinal cord injury.Adv Healthc Mater,5(7):802-812.https://doi.org/10.1002/adhm.201500810
    Liang P,Liu JR,Xiong JS,et al.,2014.Neural stem cellconditioned medium protects neurons and promotes propriospinal neurons relay neural circuit reconnection after spinal cord injury.Cell Transplant,23(Suppl 1):S45-S56.https://doi.org/10.3727/096368914X684989
    Lipp HP,Bonfanti L,2016.Adult neurogenesis in mammals:variations and confusions.Brain Behav Evol,87(3):205-221.https://doi.org/10.1159/000446905
    Liu K,Lu Y,Lee JK,et al.,2010.PTEN deletion enhances the regenerative ability of adult corticospinal neurons.Nat Neurosci,13(9):1075-1081.https://doi.org/10.1038/nn.2603
    Liu Y,Wang X,Li W,et al.,2017.A sensitized IGF1 treatment restores corticospinal axon-dependent functions.Neuron,95(4):817-833.https://doi.org/10.1016/j.neuron.2017.07.037
    Liu ZH,Yip PK,Adams L,et al.,2015.A single bolus of docosahexaenoic acid promotes neuroplastic changes in the innervation of spinal cord interneurons and motor neurons and improves functional recovery after spinal cord injury.J Neurosci,35(37):12733-12752.https://doi.org/10.1523/JNEUROSCI.0605-15.2015
    Lowry N,Goderie SK,Lederman P,et al.,2012.The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice.Biomaterials,33(10):2892-2901.https://doi.org/10.1016/j.biomaterials.2011.12.048
    Nielson JL,Sears-Kraxberger I,Strong MK,et al.,2010.Unexpected survival of neurons of origin of the pyramidal tract after spinal cord injury.J Neurosci,30(34):11516-11528.https://doi.org/10.1523/JNEUROSCI.1433-10.2010
    Noorimotlagh Z,Babaie M,Safdarian M,et al.,2017.Mechanisms of spinal cord injury regeneration in zebrafish:a systematic review.J Basic Med Sci,20(12):1287-1296.https://doi.org/10.22038/IJBMS.2017.9620
    Nulty J,Alsaffar M,Barry D,2015.Radial glial cells organize the central nervous system via microtubule dependant processes.Brain Res,1625:171-179.https://doi.org/10.1016/j.brainres.2015.08.027
    O'Neill P,Lindsay SL,Pantiru A,et al.,2017.Sulfatasemediated manipulation of the astrocyte-Schwann cell interface.Glia,65(1):19-33.https://doi.org/10.1002/glia.23047
    Orr MB,Gensel JC,2018.Spinal cord injury scarring and inflammation:therapies targeting glial and inflammatory responses.Neurotherapeutics,15(3):541-553.https://doi.org/10.1007/s13311-018-0631-6
    Oudega M,Perez MA,2012.Corticospinal reorganization after spinal cord injury.J Physiol,590(16):3647-3663.https://doi.org/10.1113/jphysiol.2012.233189
    Paganetti PA,Caroni P,Schwab ME,1988.Glioblastoma infiltration into central nervous system tissue in vitro:involvement of a metalloprotease.J Cell Biol,107(6):2281-2291.https://doi.org/10.1083/jcb.107.6.2281
    Paterniti I,Impellizzeri D,di Paola R,et al.,2014.Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice:in-vivo and in-vitro studies.J Neuroinflammation,11:6.https://doi.org/10.1186/1742-2094-11-6
    Piantino J,Burdick JA,Goldberg D,et al.,2006.An injectable,biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury.Exp Neurol,201(2):359-367.https://doi.org/10.1016/j.expneurol.2006.04.020
    Prins ML,Matsumoto JH,2014.The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury.J Lipid Res,55(12):2450-2457.https://doi.org/10.1194/jlr.R046706
    Purves D,1975.Functional and structural changes in mammalian sympathetic neurones following interruption of their axons.J Physiol,252(2):429-463.https://doi.org/10.1113/jphysiol.1975.sp011151
    Ramu J,Herrera J,Grill R,et al.,2008.Brain fiber tract plasticity in experimental spinal cord injury:diffusion tensor imaging.Exp Neurol,212(1):100-107.https://doi.org/10.1016/j.expneurol.2008.03.018
    Ren H,Han M,Zhou J,et al.,2014.Repair of spinal cord injury by inhibition of astrocyte growth and inflammatory factor synthesis through local delivery of flavopiridol in PLGA nanoparticles.Biomaterials,35(24):6585-6594.https://doi.org/10.1016/j.biomaterials.2014.04.042
    Renault-Mihara F,Katoh H,Ikegami T,et al.,2011.Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition.EMBOMol Med,3(11):682-696.https://doi.org/10.1002/emmm.201100179
    Rolls A,Shechter R,Schwartz M,2009.The bright side of the glial scar in CNS repair.Nat Rev Neurosci,10(3):235-241.https://doi.org/10.1038/nrn2591
    Sabelstr?m H,Stenudd M,Réu P,et al.,2013.Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice.Science,342(6158):637-640.https://doi.org/10.1126/science.1242576
    Samantaray S,Sribnick EA,Das A,et al.,2008.Melatonin attenuates calpain upregulation,axonal damage and neuronal death in spinal cord injury in rats.J Pineal Res,44(4):348-357.https://doi.org/10.1111/j.1600-079X.2007.00534.x
    Sasaki M,Hains BC,Lankford KL,et al.,2006.Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells.Glia,53(4):352-359.https://doi.org/10.1002/glia.20285
    Sasaki M,Radtke C,Tan AM,et al.,2009.BDNF-hypersecreting human mesenchymal stem cells promote functional recovery,axonal sprouting,and protection of corticospinal neurons after spinal cord injury.J Neurosci,29(47):14932-14941.https://doi.org/10.1523/JNEUROSCI.2769-09.2009
    Schnell L,Schneider R,Kolbeck R,et al.,1994.Neurotrophin-3enhances sprouting of corticospinal tract during development and after adult spinal cord lesion.Nature,367(6459):170-173.https://doi.org/10.1038/367170a0
    Scholpa NE,Schnellmann RG,2017.Mitochondrial-based therapeutics for the treatment of spinal cord injury:mitochondrial biogenesis as a potential pharmacological target.J Pharmacol Exp Ther,363(3):303-313.https://doi.org/10.1124/jpet.117.244806
    Shevchouk OT,Ball GF,Cornil CA,et al.,2017.Studies of HVC plasticity in adult canaries reveal social effects and sex differences as well as limitations of multiple markers available to assess adult neurogenesis.PLoS ONE,12(1):e0170938.https://doi.org/10.1371/journal.pone.0170938
    Simonen M,Pedersen V,Weinmann O,et al.,2003.Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury.Neuron,38(2):201-211.https://doi.org/10.1016/S0896-6273(03)00226-5
    Siracusa R,Paterniti I,Bruschetta G,et al.,2016.The association of palmitoy lethanolamide with luteolin decreases autophagy in spinal cord injury.Mol Neurobiol,53(6):3783-3792.https://doi.org/10.1007/s12035-015-9328-6
    Song WG,Amer A,Ryan D,et al.,2016.Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.Exp Neurol,277:46-57.https://doi.org/10.1016/j.expneurol.2015.12.008
    Su ZD,Niu WZ,Liu ML,et al.,2014.In vivo conversion of astrocytes to neurons in the injured adult spinal cord.Nat Commun,5:3338.https://doi.org/10.1038/ncomms4338
    Tang PF,Hou HP,Zhang LC,et al.,2014.Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats.Mol Neurobiol,49(1):276-287.https://doi.org/10.1007/s12035-013-8518-3
    Tsai HH,Li H,Fuentealba LC,et al.,2012.Regional astrocyte allocation regulates CNS synaptogenesis and repair.Science,337(6092):358-362.https://doi.org/10.1126/science.1222381
    Wang XF,Hu JG,She Y,et al.,2014.Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats.Cereb Cortex,24(11):3069-3079.https://doi.org/10.1093/cercor/bht162
    Wang YP,Cheng XX,He Q,et al.,2011.Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins.JNeurosci,31(16):6053-6058.https://doi.org/10.1523/JNEUROSCI.5524-09.2011
    Wang ZC,Nong J,Shultz RB,et al.,2017.Local delivery of minocycline from metal ion-assisted self-assembled complexes promotes neuroprotection and functional recovery after spinal cord injury.Biomaterials,112:62-71.https://doi.org/10.1016/j.biomaterials.2016.10.002
    Wang ZM,Reynolds A,Kirry A,et al.,2015.Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery.JNeurosci,35(7):3139-3145.https://doi.org/10.1523/JNEUROSCI.2832-14.2015
    Wang ZM,Winsor K,Nienhaus C,et al.,2017.Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury.Neurobiol Dis,99:24-35.https://doi.org/10.1016/j.nbd.2016.12.010
    Weidner N,Blesch A,Grill RJ,et al.,1999.Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1.J Comp Neurol,413(4):495-506.https://doi.org/10.1002/(SICI)1096-9861(19991101)413:4<495::AID-CNE1>3.0.CO;2-Z
    Weiner GM,Faraji AH,Ducruet AF,2015.The use of nanotechnology to improve the neuroprotective effects of adenosine in stroke and spinal cord injury.Neurosurgery,76(4):N21-N22.https://doi.org/10.1227/01.neu.0000462699.12962.5d
    Weishaupt N,Mason ALO,Hurd C,et al.,2014.Vectorinduced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.Neuroscience,272:65-75.https://doi.org/10.1016/j.neuroscience.2014.04.041
    White RE,Rao M,Gensel JC,et al.,2011.Transforming growth factorαtransforms astrocytes to a growthsupportive phenotype after spinal cord injury.J Neurosci,31(42):15173-15187.https://doi.org/10.1523/JNEUROSCI.3441-11.2011
    Willand MP,Rosa E,Michalski B,et al.,2016.Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats.Neuroscience,334:93-104.https://doi.org/10.1016/j.neuroscience.2016.07.040
    Witheford M,Westendorf K,Roskams AJ,2013.Olfactory ensheathing cells promote corticospinal axonal outgrowth by a L1 CAM-dependent mechanism.Glia,61(11):1873-1889.https://doi.org/10.1002/glia.22564
    Wu W,Lee SY,Wu XB,et al.,2014.Neuroprotective ferulic acid(FA)-glycol chitosan(GC)nanoparticles for functional restoration of traumatically injured spinal cord.Biomaterials,35(7):2355-2364.https://doi.org/10.1016/j.biomaterials.2013.11.074
    Yang ZJ,Xie WG,Ju FR,et al.,2017.In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice.Neuropharmacology,116:30-37.https://doi.org/10.1016/j.neuropharm.2016.12.007
    Yawno T,Mahen M,Li JG,et al.,2017.The beneficial effects of melatonin administration following hypoxia-ischemia in preterm fetal sheep.Front Cell Neurosci,11:296.https://doi.org/10.3389/fncel.2017.00296
    Yip PK,Wong LF,Sears TA,et al.,2010.Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat.PLoS Biol,8(6):e1000399.https://doi.org/10.1371/journal.pbio.1000399
    Yu PP,Huang LD,Zou J,et al.,2008.Immunization with recombinant Nogo-66 receptor(NgR)promotes axonal regeneration and recovery of function after spinal cord injury in rats.Neurobiol Dis,32(3):535-542.https://doi.org/10.1016/j.nbd.2008.09.012
    Yu WM,Yu H,Chen ZL,2007.Laminins in peripheral nerve development and muscular dystrophy.Mol Neurobiol,35(3):288-297.https://doi.org/0.1007/s12035-007-0026-x
    Zareen N,Shinozaki M,Ryan D,et al.,2017.Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.Exp Neurol,297:179-189.https://doi.org/10.1016/j.expneurol.2017.08.004
    Zhao YZ,Jiang X,Xiao J,et al.,2016.Using NGF heparinpoloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury.Acta Biomater,29:71-80.https://doi.org/10.1016/j.actbio.2015.10.014
    Zhou YL,Zhang HY,Zheng BB,et al.,2016.Retinoic acid induced-autophagic flux inhibits ER-stress dependent apoptosis and prevents disruption of blood-spinal cord barrier after spinal cord injury.Int J Biol Sci,12(1):87-99.https://doi.org/10.7150/ijbs.13229
    Zukor K,Belin S,Wang C,et al.,2013.Short hairpin RNAagainst PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury.J Neurosci,33(39):15350-15361.https://doi.org/10.1523/JNEUROSCI.2510-13.2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700