壳聚糖负载莫西沙星复合物的抑菌活性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Antimicrobial Activity of Chitosan Loaded Moxifloxacin Complex
  • 作者:曹晋静 ; 苏艳丽
  • 英文作者:CAO Jinjing;SU Yanli;Guiyang Nursing Vocational College;
  • 关键词:壳聚糖 ; 喹诺酮类 ; 莫西沙星 ; 共价偶联 ; 药物载药系统 ; 抑菌 ; 扫描电镜
  • 英文关键词:chitosan;;quinolones;;moxifloxacin;;covalent coupling;;drug loading system;;bacteriostat;;scanning electron microscope
  • 中文刊名:GYYB
  • 英文刊名:Journal of Guizhou Medical University
  • 机构:贵阳护理职业学院;
  • 出版日期:2018-05-17 17:57
  • 出版单位:贵州医科大学学报
  • 年:2018
  • 期:v.43;No.212
  • 基金:贵州省科学技术厅基金项目[黔科合LH字(2015)7330,黔科合LG字(2012)009]
  • 语种:中文;
  • 页:GYYB201805011
  • 页数:6
  • CN:05
  • ISSN:52-1164/R
  • 分类号:50-55
摘要
目的:通过构建壳聚糖(CHIT)负载莫西沙星载药系统,探索新型喹诺酮类抗菌药物的抑菌效果。方法:采用共价键偶联法构建CHIT负载莫西沙星复合物,采用紫外吸收光谱和origin软件评价CHIT负载莫西沙星复合物负载效果;以单纯莫西沙星为对照,采用滤纸片法和琼脂二倍稀释法考察CHIT载药复合物对大肠杆菌、金黄色葡萄球菌、鲍曼不动杆菌及枯草芽孢杆菌的抑菌活性,扫描电镜观察抑菌后细菌形态。结果:在波长293 nm处莫西沙星及CHIT负载莫西沙星复合物有最大的特征吸收峰,CHIT在这个范围没有吸收峰,origin软件线性拟合所得的293 nm处的线性方程为Y=0.5X+0.02(Y为吸光度值,X为药物浓度),相关系数(r)=0.999 8;滤纸片法结果显示,随着CHIT负载莫西沙星复合物药物浓度的增加,抑菌作用逐渐加强,同浓度CHIT负载莫西沙星复合物对大肠杆菌的抑菌效果最强,其次为金黄色葡萄球菌,对鲍曼不动杆菌和枯草芽孢杆菌的抑菌作用较弱;琼脂二倍稀释法结果显示单独使用莫西沙星对大肠杆菌、金黄色葡萄球菌的最低抑菌浓度(MIC)值为1.12 mg/L、对鲍曼不动杆菌和枯草芽孢杆菌的MIC值为2.24 mg/L,CHIT载药复合物对大肠杆菌的MIC值为0.28 mg/L、金黄色葡萄球菌为0.56 mg/L、鲍曼不动杆菌和枯草芽孢杆菌为1.12 mg/L;扫描电镜下可见,CHIT负载莫西沙星复合物作用于细菌后,细菌细胞出现部分破裂。结论:CHIT负载莫西沙星复合物对大肠杆菌、金黄色葡萄球菌、鲍曼不动杆菌和枯草芽孢杆菌抑菌效果优于单独使用莫西沙星。
        Objective: To investigate the antimicrobial effect of new quinolones by constructing a chitosan loaded moxifloxacin drug carrier system. Methods: The chitosan loaded moxifloxacin complex was constructed by covalent bond coupling method. The effect of chitosan loaded moxifloxacin complex was evaluated by UV absorption spectrum and origin software. The antimicrobial activity of chitosan complex against Escherichia coli,Staphylococcus aureus,Acinetobacter baumannii and Bacillus subtilis was investigated by filter paper and Agar dilution. The morphology of bacteria after bacteriostasis was observed by scanning electron microscope. Results: At the wavelength of 293 nm,moxifloxacin and chitosan loaded moxifloxacin complex had the largest characteristic absorption peak,and the linear equation of chitosan at 293 nm with no absorption peak at 293 nm was Y = 0. 5 X + 0. 02( Y for absorbance value,X for drug concentration) and correlation coefficient( r) = 0. 999 8. The results of filter paper showed that with the increase of the concentration of chitosan loaded moxifloxacin complex,the bacteriostatic effect of the same concentration of chitosan loaded moxifloxacin complex was strengthened,and the bacteriostatic effect of the same concentration of chitosan loaded moxifloxacin complex on Escherichia coli was the strongest. The second was Staphylococcus aureus,which had weak bacteriostatic effect on Acinetobacter baumannii and Bacillus subtilis. The results of Agar double dilution showed that moxifloxacin alone was used in Escherichia coli; the minimum inhibitory concentration( MIC) of Staphylococcus aureus was 1. 12 mg/L; the MIC value for Acinetobacter baumannii and Bacillus subtilis was 2. 24 μg/m L; the MIC of chitosan-loaded complex to Escherichia coli was 0. 28μg/m L; staphylococcus aureus was 0. 56 μg/m L; acinetobacter baumannii and Bacillus subtilis were 1. 12 μg/m L. Scanning electron microscope( SEM) showed that the bacterial cells were partially ruptured after the action of the chitosan-loaded moxifloxacin complex. Conclusion: The inhibitory effect of chitosan loaded moxifloxacin complex on Escherichia coli,Staphylococcus aureus,Acinetobacter baumannii and Bacillus subtilis is better than that on moxifloxacin alone.
引文
[1]SE'BASTIEN V V,NGUYEN H A,VAN BAMBEKE F,et al.Contrasting effects of human THP-1 cell differentiationon levofloxacin and moxifloxacin intracellular accumulation and activity against Staphylococcus aureus and Listeria monocytogenes[J].J Antimicrob Chemother,2008,62(3):518-521.
    [2]FREIRE-MORAN L,ARONSSON B,MANZ C,et al.Critical shortage of new antibiotics in development against multidrug-resistant bacteria-time to react is now[J].Drug Resist Updat,2011,14(2):118-124.
    [3]ZHANGL,PORNPATTANANANGKUL D,HU C M J,et al.Development of nanoparticles for antimicrobial drug delivery[J].Curr Med Chem,2010,17(6):585-594.
    [4]THERESA M A,PIETER R C.Drug delivery systems:entering the mainstream[J].Science,2004,303(5665):1818-1822.
    [5]LIU Z,JIAO Y,WANG Y,et al.Polysaccharidesbased nanoparticles as drug delivery systems[J].Adv Drug Deliv Rev,2008,60(15):1650-1662.
    [6]RUBIANA M,MAINARDES,LUCIANO P.Drug delivery systems:past,present,and future[J].Current Drug Targets,2004,5(5):449-455.
    [7]曾巧玲,樊小林,赵希娟,等.壳聚糖与左氧氟沙星的共价偶联载药复合物的抗菌活性研究[J].西南师范大学学报:自然科学版,2013,38(4):75-79.
    [8]黄秀梨.微生物学实验指导[M].北京:高等教育出版社,2004:6-8.
    [9]李仲兴,王秀华,孟晓洁.莫西沙星对224株凝固酶阴性葡萄球菌的体外抗菌活性观察[J].中国抗生素杂志,2005,30(8):498-502.
    [10]ZHAO Y Y,YE C J,LIUW W,et al.Tuning the composition of aupt bimetallic nanoparticles for antibacterial application.angew[J].Chem,2014,53(31):1-6.
    [11]王重振.钱利生细菌对喹诺酮类抗菌药的分子耐药机制[J].中国生物工程杂志,2003,23(12),26-30.
    [12]EVERETT M J,JIN Y F,RICCI V,et al.Contributions of individual mechanisms to fluoroquinolone resistance in36 Escherichia coli strains isolated from humans and animals.Antimicrob Agents Chemother,1996,40(10):2380-2386.
    [13]张峻.壳聚糖的药剂学应用[J].食品与药品,2007,7(8):29-31.
    [14]BERNKOP-SCHNORCH A,DONNHAUPT S.Chitosanbased drug delivery systems[J].Eur JPharm Biopharm,2012,81(3):463-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700