大型物联网激光通信系统的设计与实现
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and implementation of large scale Internet of things laser communication system
  • 作者:杨金山
  • 英文作者:YANG Jinshan;Hengshui University;
  • 关键词:大型物联网 ; 激光通信 ; 系统 ; ZigBee ; 路由节点 ; BP神经网络
  • 英文关键词:large scale Internet of things;;laser communication;;system;;ZigBee;;routing node;;BP neural network
  • 中文刊名:JGZZ
  • 英文刊名:Laser Journal
  • 机构:衡水学院;
  • 出版日期:2019-04-25
  • 出版单位:激光杂志
  • 年:2019
  • 期:v.40;No.259
  • 基金:河北省自然科学基金(No.F2016111005)
  • 语种:中文;
  • 页:JGZZ201904020
  • 页数:5
  • CN:04
  • ISSN:50-1085/TN
  • 分类号:96-100
摘要
传统星地激光通信系统进行通信监测时,未考虑光学系统引起的仪器偏振误差,导致系统通信误码率偏高。设计大型物联网激光通信系统,系统硬件由激光传感信息感知层、网络传输层与信息融合输出层构成。系统软件在激光传感信息感知层中设计激光传感器的路由节点,路由节点将在其他传感器节点接收的数据信息转发到网络传输层后,采用ZigBee技术通信将信息传输到信息融合输出层中,再采用基于BP神经网络的激光传感器信息融合算法,将全部数据信息进行融合后进行信息通信。实验结果表明,所设计系统可有效对火灾情况进行信息通信检测,且多次实验后,通信信息误码率最大值仅为0. 10,通信耗时最大值为10 ms、时间延迟最大值仅为2. 0 ms,具有误码率低、时间延迟短、效率快的优势。
        When traditional satellite-to-ground laser communication system carries out communication monitoring,the instrument polarization error caused by optical system is not considered,resulting in high bit error rate. This paper designs a large-scale Internet of Things laser communication system. The system hardware consists of laser sensing information sensing layer,network transmission layer and information fusion output layer. The system software designs a laser sensor routing node in the laser sensor information sensing layer. After the routing node forwards the data received by other sensor nodes to the network transmission layer,the information is transmitted to the output layer of information fusion using ZigBee technology. Then the laser sensor information fusion based on BP neural network is adopted. The algorithm combines all data and information for information communication. The experimental results show that the designed system can effectively detect fire information communication,and after many experiments,the maximum bit error rate of communication information is only 0. 10,the maximum communication time consumption is 10 ms,the maximum time delay is only 2. 0 ms. It has the advantages of low bit error rate,short time delay and high efficiency.
引文
[1]王超,江伦,董科研,等.星地激光通信系统偏振特性分析[J].激光与光电子学进展,2015,52(12):66-71.
    [2]张震,孙建锋,卢斌,等.星间相干激光通信中科斯塔斯锁相系统设计[J].中国激光,2015,42(8):169-174.
    [3]钟坤,何宁,蒋红艳.可变基频激光通信数据传输系统研究与实现[J].激光与红外,2016,46(10):1220-1224.
    [4]亢烨,柯熙政,邱昌佩.基于以太数据的无线激光通信系统透明传输设计[J].电子测量与仪器学报,2017,31(5):700-707.
    [5]宋延嵩,常帅,佟首峰,等.航空激光通信系统的特性分析及机载激光通信实验[J].中国激光,2016(12):209-220.
    [6]于笑楠,佟首峰,姜会林,等.多点激光通信光学中继天线伺服系统[J].光学学报,2015,35(9):168-175.
    [7]涂巧玲,胡涛,曹阳.机载激光通信终端的模糊变结构跟踪方法研究[J].半导体光电,2015,36(1):125-127.
    [8]张雅琳,安岩,姜会林,等.空间激光通信一点对多点光学原理与方法的比较研究[J].兵工学报,2016,37(1):165-171.
    [9]赵馨,牛俊坡,刘云清,等.导航卫星中激光通信/测距一体化技术及链路特性分析[J].激光与光电子学进展,2015,52(6):79-85.
    [10]王珊,肖沙里,彭光辉,等.基于PSK调制的激光通信系统研究[J].光通信研究,2015,41(2):64-66.
    [11]张鹏,秦开宇,蒋大钢,等.临近空间相干激光通信链路外差效率分析[J].强激光与粒子束,2015,27(4):27041006.
    [12]ZENG F,GAO S J,SAN X G,et al.Development status and trend of airborne laser communication terminals[J].Chinese Optics,2016,9(1):65-73.
    [13]王世超,吴斌,张若禹,等.基于导航星座的天基光网络拓扑设计与仿真[J].计算机仿真,2016,33(5):111-115.
    [14]ELSER D,GüNTHNER K,KHAN I,et al.Satellite Quantum Communication via the Alphasat Laser Communication Terminal[J].2015,20(1):86-91.
    [15]陈牧,柯熙政.大气湍流对激光通信系统性能的影响研究[J].红外与激光工程,2016,009(8):108-114.
    [16]高世杰,盛磊,吴志勇,等.大气激光通信光斑图像的快速复原与实时检测[J].光学精密工程,2015,23(8):2393-2399.
    [17]赵洁.物联网通信信道的量子密匙协议研究[J].激光杂志,2017,38(12):114-118.
    [18]EL-SHERIF A F,AYOUB H S,EL-SHARKAWY Y H,et al.The design and implementation of photoacoustic based laser warning receiver for harsh environments[J].Optics&Laser Technology,2018,98:385-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700