用户名: 密码: 验证码:
自主CPU发展道路及在航天领域应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development Road of Self-Developed CPU and Application in Aerospace Field
  • 作者:胡伟武
  • 英文作者:HU Weiwu;Loongson Technology Corporation Limited;Institute of Computing Technology, Chinese Academy of Sciences;
  • 关键词:中央处理器 ; 软件生态 ; 抗辐照 ; 自主可控
  • 英文关键词:central processor unit(CPU);;software ecology;;radiation-harden;;independent and controllable
  • 中文刊名:SHHT
  • 英文刊名:Aerospace Shanghai
  • 机构:龙芯中科技术有限公司;中国科学院计算技术研究所;
  • 出版日期:2019-02-22
  • 出版单位:上海航天
  • 年:2019
  • 期:v.36;No.215
  • 语种:中文;
  • 页:SHHT201901001
  • 页数:9
  • CN:01
  • ISSN:31-1481/V
  • 分类号:5-13
摘要
目前,我国中央处理器(CPU)的发展主要有自主研发和引进技术两条路线。自主研发的CPU在性能和软件生态上能否赶超引进技术的CPU成为争论的焦点。首先论述了我国CPU发展不能仅着眼于单项技术瓶颈的突破和产品市场占有率的提高,还必须建立起自主可控的信息技术与产业生态体系;然后结合龙芯CPU研发和产业化的实践,论述了只要结合应用需求进行持续改进,自主研发的CPU在性能和软件生态上就能赶超引进技术的CPU,满足我国自主信息化应用的需求;最后论述了自主抗辐照CPU的发展及在航天领域应用情况。
        Whether China should independently design the CPU or introduce the foreign CPU technology is often argued at present. The debate focuses on the issue that whether performance and software ecology of the self-developed CPU can match or even overshadow the imported technology. This paper firstly argues that we can not only focus on the breakthrough of single technology and the increase of the market share, and the independent and controllable information technology and industrial ecosystem must be established for the development of the domestic CPU. Secondly, combined with the practice of R&D and industrialization of the Loongson CPU, this paper then discusses that as long as the self-developed CPU is continuously improved according to application requirements, it can catch up with and surpass the CPU developed based on the imported foreign technology in terms of performance and software ecology, and can completely meet the needs of China's independent information application. Finally, the development and application of the self-designed radiation-harden CPU are introduced.
引文
[1] HENNESSY J L, PATTERSON D A. Computer architecture: a quantitative approach[M]. 5th ed. Waltham, MA: Elsevier, 2011: 2-61.
    [2] PATTERSON D A, HENNESSY J L. Computer organization and design MIPS edition: the hardware/software interface[M]. 5th ed. Waltham, MA: Elsevier, 2013: 60-163.
    [3] PATTERSON D A, DITZEL D R. The case for the reduced instruction set computer[J]. ACM SIGARCH Computer Architecture News, 1980, 8(6): 25-33.
    [4] TOMASULO R M. An efficient algorithm for exploiting multiple arithmetic units[J]. IBM Journal of Research and Development, 1967, 11(1): 25-33.
    [5] YEAGER K C. The MIPS R10000 superscalar microprocessor[J]. IEEE Micro, 1996, 16(2): 28-41.
    [6] BRYANT R E, O’HALLARON D R. Computer systems: a programmer’s perspective[M]. Upper Saddle River: Prentice Hall, 2003: 1-19.
    [7] HU W W, WANG R, CHEN Y, et al. Godson-3B: a 1 GHz 40 W 8-core 128 GFLOPS processor in 65 nm CMOS[C]// IEEE International Solid-State Circuits Conference. San Francisco: IEEE, 2011:76-78.
    [8] HU W W, ZHANG Y F, YANG L, et al. Godson-3B1500: a 32 nm 1.35 GHz 40 W 172.8 GFLOPS 8-core processor[C]// IEEE International Solid-State Circuits Conference Digest of Technical Papers. San Francisco: IEEE, 2013:54-55.
    [9] HU W W, WANG J, GAO X, et al. Godson-3: a scalable multicore RISC processor with x86 emulation[J]. IEEE Micro, 2009, 29: 17-29.
    [10] GAO X, CHEN Y J, WANG H D, et al. System architecture of Godson-3 multi-core processors[J]. Journal of Computer Science and Technology, 2010, 25(2): 181-191.
    [11] 吴瑞阳, 汪文祥, 王焕东, 等. 龙芯GS464E处理器核架构设计[J].中国科学:信息科学,2015,45(4):480-500.
    [12] HENNING J L. SPEC CPU2006 benchmark descriptions[J]. ACM SIGARCH Computer Architecture News, 2006, 34(4): 1-17.
    [13] CAI S, YANG Y, LIN C, et al. JVM virtual method invoking optimization based on CAM table[C]// IEEE International Conference on Networking, Architecture and Storage. Dalian: IEEE, 2011:122-129.
    [14] QI A, GUO J J, WEN S, et al. Optimizing memory access with fast address computation on a MIPS architecture[C]// IEEE International Conference on Networking, Architecture, and Storage. Tianjin: IEEE, 2014: 143-147.
    [15] DING Y, ZHOU M, ZHAO Z, et al. Finding the limit: examining the potential and complexity of compilation scheduling for JIT-based runtime systems[J]. ACM SIGPLAN Notices, 2014, 49(4): 607-622.
    [16] 张爽爽, 孟小甫, 汪文祥, 等.龙芯UNCACHE加速原理及其在系统图形性能优化中的应用[J].高技术通讯,2015,25(4):357-364.
    [17] ZHAO Y F, ZHENG H C, FAN L, et al. Experimental research on transient radiation effects in microprocessors based on SPARC-V8 architecture[J]. Journal of Semiconductors, 2015, 36(11): 114008.
    [18] 李延节, 尉爽生, 何劲松, 等. 基于SPARCV8架构的三机冗余仿真系统的设计[J].航天控制,2013,31(6):71-75.
    [19] ZHAO Y, QIN H, PENG H, et al. Design of high performance and radiation hardened SPARC-V8 processor[J]. Journal of Semiconductors, 2015, 36(11):115004.
    [20] 詹盼盼, 郭廷源, 高建军, 等. 基于BM3803处理器的即插即用星载计算机系统设计[J].航天器工程,2013,22(6):92-96.
    [21] 程炳琳, 刘虎, 刘刚. 基于BM3803+FPGA的磁悬浮飞轮磁轴承控制器的设计与实现[J].航天控制,2011,29(1):88-92.
    [22] 杨旭, 范煜川, 范宝峡. 龙芯X微处理器抗辐照加固设计[J].中国科学:信息科学,2015,45(4):501-512.
    [23] 袁子阳. 抗辐射加固“龙芯”处理器的空间辐射环境适应性研究及航天计算机设计[D].北京:中国科学院研究生院(空间科学与应用研究中心),2009.
    [24] 黄超, 陈勇, 林宝军. 基于抗辐照龙芯的星载计算机容错启动研究[J].计算机科学,2016,43(增刊2):532-535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700