氮掺杂TiO_2/HTi_2NbO_7纳米片复合材料的制备及其可见光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Visible Light Photocatalytic Activity of Nitrogen-Doped TiO_2/HTi_2NbO_7 Nanosheet Nanocomposite
  • 作者:吕洪杰 ; 高欣 ; 孟承启 ; 程婷 ; 刘超 ; 陈小卫 ; 董鹏玉 ; 孟强强 ; 奚新国
  • 英文作者:Lü Hong-Jie;GAO Xin;MENG Cheng-Qi;CHENG Ting;LIU Chao;CHEN Xiao-Wei;DONG Peng-Yu;MENG Qiang-Qiang;XI Xin-Guo;School of Materials Science and Engineering, Jiangsu University;School of Materials Science and Engineering, Yancheng Institute of Technology;School of Materials Science and Engineering, Anhui University of Science and Technology;Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,Yancheng Institute of Technology;School of Chemistry and Chemical Engineering, Yancheng Institute of Technology;
  • 关键词:TiO_2 ; HTi_2NbO_7纳米片 ; 氮掺杂 ; 复合材料 ; 光催化性能
  • 英文关键词:TiO_2;;HTi_2NbO_7 nanosheet;;N-doped;;composite;;photocatalytic properties
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:江苏大学材料科学与工程学院;盐城工学院材料科学与工程学院;安徽理工大学材料科学与工程学院;江苏省新型环保重点实验室盐城工学院;盐城工学院化学化工学院;
  • 出版日期:2019-03-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家重点研发计划项目(No.2016YFC0209202);; 国家自然科学基金(No.21403184,51772258);; 住房和城乡建设部科学技术项目(No.2018-K1-004);; 江苏省自然科学基金(No.BK20160434);; 江苏省高校自然科学研究项目(No.14KJB150025,15KJA430007,14KJB430023);; 江苏省省级新型墙体材料专项基金(No.2016-14);; 盐城市农业科技创新专项引导资金项目(No.YK2016031)资助
  • 语种:中文;
  • 页:WJHX201903007
  • 页数:11
  • CN:03
  • ISSN:32-1185/O6
  • 分类号:64-74
摘要
首先采用高温固相法制备层状前驱体CsTi_2NbO_7,通过与硝酸进行质子交换反应可得到层状HTi_2NbO_7,然后将HTi_2NbO_7分散在四丁基氢氧化铵(TBAOH)溶液中进行剥离反应,得到HTi_2NbO_7纳米片悬浮液,并进行冷冻干燥处理。以尿素为N源,将冷冻干燥的HTi_2NbO_7纳米片与TiO_2前驱体(钛酸异丙酯)混合物进行高温焙烧处理,成功地合成了新型氮掺杂Ti O_2/HTi_2NbO_7纳米片(N-TTN)复合材料。采用扫描电子显微镜(SEM)、高倍透射电子显微镜(HRTEM)、X射线衍射(XRD)、N_2吸附-脱附测试、X射线光电子能谱(XPS)、紫外可见吸收光谱(UV-Vis)及电化学测试等对材料的形貌、晶体结构、比表面积、孔分布和光吸收性能等进行表征与分析。研究发现锐钛矿型TiO_2纳米颗粒均匀地分散在HTi_2NbO_7纳米片表面,在两组分间形成异质结结构。通过在可见光下降解有机污染物罗丹明B(RhB)来评价不同样品的光催化活性。结果表明,N-TTN复合材料具有最优的光催化降解活性,活性的增强主要归功于N元素的掺杂、异质结的构筑、增大的比表面积和丰富的介孔结构。
        The nitrogen-doped nanocomposite based on TiO_2 nanoparticles and HTi_2 NbO_7 nanosheets was successfully synthesized by the following procedures: Layered CsTi_2 NbO_7 was firstly prepared by high temperature solidstate method, and then treated with HNO_3 solution to obtain layered HTi_2 NbO_7 by proton-exchange reaction. The resulted layered HTi_2 NbO_7 was well dispersed in tetrabutylammonium hydroxide(TBAOH) solution in order to prepare HTi_2 NbO_7 nanosheets by exfoliation reaction and then freeze-dried treatment. Finally, to prepare nitrogendoped TiO_2/HTi_2 NbO_7 nanosheets(denoted as N-TTN) nanocomposites, the mixtures of the freeze-dried HTi_2 NbO_7 nanosheets and titanium 髧 isopropoxide were calcinated in the presence of urea as N source. The as-prepared samples were characterized by X-ray diffraction(XRD), high resolution transmission electron microscopy(HRTEM), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), photoelectrochemical properties measurements, UV-Vis spectroscopy as well as N_2 adsorption-desorption measurements. It was found that anatase TiO_2 nanoparticles were well-distributed on the surface of HTi_2 NbO_7 nanosheets, resulting in the formation of heterojunction structure between two components. The photocatalytic activities of samples were evaluated by the photodegradation of rhodamine B(RhB) under visible light irradiation. It indicated that the resultant N-TTN nanocomposite showed a highest photocatalytic activity toward the degradation of RhB, owing to the synergistic effects of nitrogen doping, the formation of heterojunction, increased specific surface area and rich mesoporous structure.
引文
[1] Chen Y P, Lu C L, Xu L, et al. CrystEngComm, 2010,12(11):3740-3747
    [2] Xu L, Yang X Y, Zhai Z, et al. CrystEngComm, 2011,13(24):7267-7275
    [3] Tan C W, Zhu G Q, Hojamberdiev M, et al. Appl. Catal. B,2014,152-153(1):425-436
    [4] Du G D, Guo Z P, Wang S Q, et al. Chem. Commun., 2010,46(7):1106-1108
    [5] Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995,95(3):735-758
    [6] Pelaez M, Nolan N T, Pillai S C, et al. App. Catal. B, 2012,125(33):331-349
    [7] Zhang Y C, Yang M, Zhang G, et al. Appl. Catal. B, 2013,142-143:249-258
    [8] Zhang Y C, Li J, Xu H Y. Appl. Catal. B, 2012,123-124(23):18-26
    [9] Wang S C, Yun J H, Luo B, et al. J. Mater. Sci. Technol.,2017,33(1):1-22
    [10]He J, Li Q J, Tang Y, et al. Appl. Catal. A, 2012,443-444:145-152
    [11]Zhang L H, Hu C H, Cheng L Y, et al. Chin. J. Catal.,2013,34(11):2089-2097
    [12]He J, Xu A D, Hu L F, et al. Powder Technol., 2015,270:154-162
    [13]Zhang G H, Lin B Z, Yang W W, et al. RSC Adv., 2014,5(8):5823-5829
    [14]JIANG Shao-Feng(蒋少锋), YAO Qian-Ru(姚倩茹), GAO Bi-Fen(高碧芬), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015,31(3):514-520
    [15]Zhai Z, Yang X Y, Xu L, et al. Nanoscale, 2012,4(2):547-556
    [16]Liu C, Wu L, Chen J, et al. Phys. Chem. Chem. Phys., 2014,16(26):13409-13417
    [17]Hervieu M, Raveau B. J. Solid State Chem., 1980,32(2):161-165
    [18]Dias A S, Lima S, Carriazo D, et al. J. Catal., 2006,244(2):230-237
    [19]Yang H C, Zhang S W, Cao R Y, et al. Sci. Rep., 2017,7(1):8686-8686
    [20]HU Li-Fang(胡丽芳), HE Jie(何杰), LIU Luan(刘媛), et al.Acta Phys.-Chim. Sin.(物理化学学报), 2016,32(3):737-744
    [21]Zhang Y J, Wang N N, He J, et al. Nano, 2016,11(2):1813-1818
    [22]Li J, Xu L, He J, et al. Nano, 2017,12(8):1750100
    [23]Li J, Xu L, He J, et al. New J. Chem., 2018,42:10279-10289
    [24]Zhai Z, Hu C H, Yang X Y, et al. J. Mater. Chem., 2012,22(36):19122-19131
    [25]Liu C, Han R, Ji H, et al. Phys. Chem. Chem. Phys., 2016,18(2):801-810
    [26]Hwang D W, Kim H G, Lee J S, et al. J. Phys. Chem. B,2005,109(6):2093-2102
    [27]Okazaki Y, Mishima T, Nishimoto S, et al. Mater. Lett.,2008,62:3337-3340
    [28]Wang B, Li C S, Hirabayashi D, et al. Int. J. Hydrogen Energy, 2010,35(8):3306-3312
    [29]Gu D E, Yang B C, Hu Y D. Catal. Commun., 2008,9(6):1472-1476
    [30]Liu C, Zhang C, Wang J S, et al. Mater. Lett., 2018,217:235-238
    [31]Wu N Q, Wang J, Tafen D N, et al. J. Am. Chem. Soc.,2010,132(19):6679-6685
    [32]Mor G K, Varghese O K, Paulose M, et al. Sol. Energy Mater. Sol. Cells, 2006,90(14):2011-2075
    [33]Ye L Q, Liu J Y, Jiang Z, et al. Nanoscale, 2013,5(19):9391-9396
    [34]Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater.,2008,20:1493-1498
    [35]Spadavecchia F, Cappelletti G, Ardizzone S, et al. Appl.Catal. B, 2010,96:314-322
    [36]Lee S H, Yamasue E, Ishihara K N, et al. Appl. Catal. B,2010,93:217-226
    [37]Chen Z J, Lin B Z, Chen Y L, et al. J. Phys. Chem. Solids,2010,71(5):841-847
    [38]Chen C C, Zhao W, Li J Y, et al. Environ. Sci. Technol.,2002,36(16):3604-3611

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700