长期保护性耕作对农田土壤水分和呼吸的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Long-term conservation tillage effects on soil respiration and soil water content
  • 作者:张文丽 ; 贾淑霞 ; 张延 ; 郭亚飞 ; 张士权 ; 阚海波
  • 英文作者:ZHANG Wenli;JIA Shuxia;ZHANG Yan;GUO Yafei;ZHANG Shiquan;KAN Haibo;Key Laboratory of Mollisols Agroecology,Northeast Institute of Geography and Agroecology,CAS;University of Chinese Academy of Sciences;Agricultural Machinery Extension Station of Bajilei Town,Nong'an County;
  • 关键词:保护性耕作 ; 连作 ; 轮作 ; 土壤呼吸
  • 英文关键词:conservation tillage;;monoculture;;rotation;;soil respiration
  • 中文刊名:TRZW
  • 英文刊名:Soils and Crops
  • 机构:中国科学院东北地理与农业生态研究所黑土区农业生态重点实验室;中国科学院大学;农安县巴吉垒镇农机技术推广站;
  • 出版日期:2019-03-11
  • 出版单位:土壤与作物
  • 年:2019
  • 期:v.8;No.29
  • 基金:中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC035);; 吉林省科技发展计划项目(20150307031NY)
  • 语种:中文;
  • 页:TRZW201901003
  • 页数:9
  • CN:01
  • ISSN:23-1580/S
  • 分类号:25-33
摘要
以保护性耕作长期定位试验为平台,从2011至2016年采用动态气室法(Li-cor8100)野外原位监测免耕与秋翻在轮作与连作两种不同种植模式下的土壤呼吸速率,解析了耕作方式对东北黑土碳循环过程的影响。研究结果显示,土壤呼吸速率表现出与土壤温度相同的季节性变化。玉米连作条件下,秋翻5-7月份土壤呼吸速率平均值显著比免耕分别高出20. 9%、14. 8%和6. 7%,而7-10月份,秋翻土壤呼吸速率平均值与免耕无显著性差异。在玉米大豆轮作的条件下,整个生长季节内秋翻与免耕处理的土壤呼吸速率无显著性差异。无论是在秋翻还是免耕处理下,轮作7月和8月的土壤呼吸速率均小于连作,但无显著差异。轮作土壤CO_2年释放量比连作高,其中秋翻高出3. 4%,免耕高出5. 9%。耕作处理对土壤水分含量的影响因种植模式而异。连作下免耕增加了土壤含水量,生长季节平均比秋翻增加14. 6%;轮作下免耕的含水量较秋翻高,但是差异不显著。土壤温度、土壤含水量与土壤呼吸速率混合模型分析表明,土壤温度、土壤含水量与土壤呼吸速率混合模型可解释土壤呼吸速率变异的52. 4%,且表明土壤呼吸与土壤温度呈明显的正相关关系。从土壤碳释放的角度出发,玉米免耕连作减少了作物生长前半期的土壤呼吸速率,并且增加了土壤水分含量,是有利于农田土壤有机碳固定的耕作措施。
        Based on a long-term conservation tillage experiment and using LI-8100 automated soil CO_2 flux system( LI-COR Inc.,Lincoln,NE,USA),we measured soil respiration biweekly from 2011 to 2016,and assessed the effects of conservation tillage( no-till: NT) on soil carbon cycling in a Black soil agro-ecosystem in northeast China. We found that soil respiration showed a significant seasonal pattern which was similar to soil temperature and water content( SWC). The highest rate occurred in summer( July or August),followed by spring and fall. From May to July,soil respiration rates under mouldboard plough( MP) were 20. 9%,14. 8% and 6. 7% higher than those under NT in the monoculture maize,while there were no significant difference between MP and NT from August to October. There was no significant difference between MP and NT with the soybean-maize rotation. Rotation increased soil respiration rate in July and August by 3. 4% and 5. 9% compared with monoculture maize,respectively. The effect of tillage treatment on soil water content varied. Compared with MP,NT significantly increased soil water content by 14. 6% under monoculture maize during the growing season; while the increase under rotation was not significant. The combined exponential model indicated that soil temperature and SWC could jointly explain 52. 4% of variation in respiration showed that soil respiration had a positive correlation with soil temperature. These results suggested that NT under monoculture would be beneficial to soil carbon sequestration by decreasing soil respiration rate during the early period of growing season,and increasing soil water content.
引文
[1]RAICH J W,POTTER C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemistry Cycles,1995,9(1):23-36.
    [2]SCHIMEL D S. Terrestrial ecosystems and carbon cycle[J]. Global Change Biology,1995,1(1):77-91.
    [3]GRANIER A,CESCHIA E,DAMESIN C,et al. The carbon balance of a young beech forest[J]. Functional Ecology,2000,14(13):312-325.
    [4]JASSENS I A,LANKREIJIER H,METTEUCCI G,et al. Productivity overshadows temperature in determining soil and ecosystem respirationacross European forests[J]. Global Change Biology,2001,7(3):269-278.
    [5]KUZYAKOV Y,LARIONOVA A A. Root and rhizomicrobial respiration:A Review of approaches to estimate respiration by autotrophic and het-erotrophic organisms in soil[J]. Journal of Plant Nutrition and Soil Science,2005,168:503-520.
    [6]KUZYAKOV Y. Sources of CO2efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry,2006,38(3):425-448.
    [7]IPCC. Climate Change 1995:The science of climate change,report of working group I[M]. New York,USA:Cambridge UniversityPress,1996.
    [8]BAYER C,MIELNICZUK J,AMADO T J C,et al. Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systemsin southern Brazil[J]. Soil and Tillage Research,2000,54(1-2):101-109.
    [9]PLAZA-BONILLA D,áLVARO-FUENTES J,CANTERO-MARTINEZ C. Identifying soil organic carbon fractions sensitive to agriculturalmanagement practices[J]. Soil and Tillage Research,2014,139:19-22.
    [10]潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-618.PAN G X,LI L Q,ZHANG X H,et al. Soil organic carbon storage of China and the sequestration on dynamics in agricultural lands[J]. Ad-vance in Earth Sciences,2003,18(4):609-618.
    [11]韩士杰,董云社,蔡祖聪,等.中国陆地生态系统碳循环的生物地球化学过程[M].北京:科学出版社,2008:258-259.HAN S J,DONG Y S,CAI Z C,et al. The biogeochemical process of terrestrial ecosystems carbon cycle in China[M]. Beijing:SciencePress,2008:258-259.
    [12]HOBBS P R,SAYRE K,GUPTA R. The role of conservation agriculture in sustainable agriculture[J]. Philosophical Transaction of the RoyalSociety B:Biological Sciences,2008,363(1491):543-555.
    [13]FAO. Save and grow:A policymaker's guide to the sustainable intensification of small holder crop production[J]. Rome:FAO,2011:1-37.
    [14]USSIRI D A N,LAL R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system froman alfisol in Ohio[J]. Soil and Tillage Research,2009,104(1):39-47.
    [15]FRANZLUEBBERS A J,HONS F M,ZUBERER D A. Tillage and crop effects on seasonal dynamics of soil CO2evolution,water content,temperature,and bulk density[J]. Applied Soil Ecology,1995,2(2):95-109.
    [16]SIX J,OGLE S M,BREIDT F J,et al. The potential to mitigate global warming with no-tillage management is only realized when practiced inthe long term[J]. Global Change Biology,2004,10(2):155-160.
    [17]SIMS P L,BRADFORD J A. Carbon dioxide fluxes in a southern plains prairie[J]. Agricultural and Forest Meteorology,2001,109(2):117-134.
    [18]R foundation for statistical computing. R:A language and environment for statistical computing[EB/OL].(2016-10-30)[2018-01-31]. https://www. R-project. org/.
    [19]周萍,刘国彬,薛萐.草地生态系统土壤呼吸及其影响因素研究进展[J].草业学报,2009,18(2):184-193.ZHOU P,LIU G B,XUE S. Review of soil respiration and the impact factors on grassland ecosystem[J]. Acta Prataculturae Sinica,2009,18(2):184-193.
    [20]SUN L,WANG S L,ZHANGY J,et al. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau,China:Effects on crop yield and soil water use[J]. Agriculture,Ecosystems and Environment,2018,251:67-77.
    [21]HATFIELD J L,SAUER T J,PRUEGER J H. Managing soils to achieve greater water use efficiency:A review[J]. Agronomy Journal,2001,93:271-280.
    [22]JORDáN A,ZAVALA L M,GIL J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain[J]. Catena,2010 81,77-85.
    [23]VERHULST N,NELISSEN V,JESPERS N. et al. Soil water content,maize yield and its stability as affected by tillage and crop residue man-agement in rainfed semi-arid highlands[J]. Plant and Soil,2011,344(1-2):73-85.
    [24]RANAIVOSON L,NAUDIN K,RIPOCHE A,et al. Agro-ecological functions of crop residues under conservation agriculture. A review[J].Agronomy for Sustainable Development,2017,37:26.
    [25]CHEN X W,CHANG L,LIANG A Z,et al. Earthworm positively influences large macropores under extreme drought conditions and conserva-tion tillage in a Chinese Mollisol[J]. Applied Ecology and Environmental Research,2018,16(1):663-675.
    [26]SHAVER T M,PETERSON G A,AHUJA L R,et al. Soil sorptivity enhancement with crop residue accumulation in semiarid dryland no-tillagroecosystems[J]. Geoderma,2013,192:254-258.
    [27]CHEN X W,SHI X H,LIANG A Z,et al. Least limiting water range and soil pore-size distribution related to soil organic carbon dynamicsfollowing zero and conventional tillage of a black soil in northeast China[J]. Journal of Agricultural Science,2015,153(2):270-281.
    [28]LI H W,GAO H W,WU H D,et al. Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in north-ern China[J]. Australian Journal of Soil Research,2007,45(5):344-350.
    [29]LIANG A Z,MCLAUGHLIN N B,ZHANG X P,et al. Short-term effects of tillage practices on soil aggregate fractions in a Chinese Mollisol[J]. Acta Agriculturae Scandinavica,Section B—Soiland Plant Science,2011,61(6):535-542.
    [30]BOLIN B,DRGENS E T. The global biogeochemical carbon cycle[M]. In:BOLIN B,DRGENS E T,KEMPE S,et al(eds.). Theglobal carbon cycle. Chichester,UK:John Wiley&Sons,1979.
    [31]POST W M,EMANUEL W R,ZINKE P J,et al. Soil carbon pools and world life zones[J]. Nature,1982,298(5870):156-159.
    [32]AL-KAISI M M,YIN X H. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations[J]. Jour-nal of environmental quality,2005,34(2):437-445.
    [33]áLVARO-FUENTES J,CANTERO-MARTíNEZ C,LóPEZ M V,et al. Soil carbon dioxide fluxes following tillage in semiarid Mediterra-nean agroecosystems[J]. Soil and Tillage Research,2007,96(1-2):331-341.
    [34]OMONODE R A,VYN T J,SMITH D R,et al. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn andcorn-soybean rotations[J]. Soil and Tillage Research,2007,95(1-2):182-195.
    [35]SHI X H,ZHANG X P,YANG X M,et al. An appropriate time-window for measuring soil CO2efflux:A case study on a black soil in north-east China[J]. Acta Agriculturae Scandinavica,Section B-Soil and Plant Science,2012,62(5):449-454.
    [36]DONG W X,HU C S,CHEN S Y,et al. Tillage and residue management effects on soil carbon and CO2emission in a wheat-corn double-cropping system[J]. Nutrient Cycling in Agroecosystems,2009,83(1):27-37.
    [37]DE CAMPOS B H C,AMADO T J C,TORNQUIST C G,et al. Long-term C-CO2emissions and carbon crop residue mineralization in an ox-isol under different tillage and crop rotation systems[J]. Revista Brasileira de Ciência do Solo,2011,35:819-832.
    [38]REICOSKY D C,DUGAS W A,TORBERT H A. Tillage-induced soil carbon dioxide loss from different cropping systems[J]. Soil and Till-age Research,1997,41(1-2):105-118.
    [39]LA SCALA JR N,BOLONHEZI D,PEREIRA G T. Short-term soil CO2emission after conventional and reduced tillage of a no-till sugarcane area in southern Brazil[J]. Soil and Tillage Research,2006,91(1-2):244-248.
    [40]MORELL FJ,áLVARO-FUENTES J,LAMPURLANéS J,et al. Soil CO2fluxes following tillage and rainfall events in a semiarid Mediterra-nean agroecosystem:Effects of tillage systems and nitrogen fertilization[J]. Agriculture,Ecosystems and Environment,2010,139(1):167-173.
    [41]BAJGAI Y,HULUGALLE N,KRISTIANSEN P,et al. Residue incorporation mitigates tillage-induced loss of soil carbon in laboratory micro-cosms[J]. Soil Use Manage,2014,30:328-336.
    [42]WUEST S B,DURR D,ALBRECHT S L. Carbon dioxide flux measurement during simulated tillage[J]. Agronomy Journal,2003,95:715-718.
    [43]LA SCALA JR N,LOPES A,SPOKAS K,et al. Short-term temporal changes of soil carbon losses after tillage described by a first-order de-cay model[J]. Soil and Tillage Research,2008,99:108-118.
    [44]NOVARA A,ARMSTRONG A,GRISTINA L,et al. Effects of soil compaction,rain exposure and their interaction on soil carbon dioxide e-mission[J]. Earth Surface Processes and Landforms,2012,37:994-999.
    [45]KUNCORO P H,KOGA K,SATTA N,et al. A study on the effect of compaction on transport properties of soil gas and water I:Relative gasdiffusivity,air permeability,and saturated hydraulic conductivity[J]. Soil and Tillage Research,2014,143:172-179.
    [46]YOO G,WANDER M W. Influence of tillage practices on soil structural controls over carbon mineralization[J]. Soil Science Society of Ameri-ca Journal,2006,70:651-659.
    [47]陈学文,张晓平,梁爱珍,等.耕作方式对黑土硬度和容重的影响[J].应用生态学报,2012,23(2):439-444.CHEN X W,ZHANG X P,LIANG A Z,et al. Effects of tillage mode on black soil's penetration resistance and bulk density[J]. ChineseJournal Applied Ecology,2012,23(2):439-444.
    [48]JIA S X,ZHANG X P,CHEN X W,et al. Long-term conservation tillage influences the soil microbial community and its contribution to soilCO2emissions in a Mollisol in northeast China[J]. Journal of Soils and Sediments,2016,16(1):1-12.
    [49]CURTIN D,WANG H,SELLES F,et al. Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations[J]. Soil ScienceSociety of America Journal,2000,64(6):2080-2086.
    [50]TU C,LI F D. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields[J]. Journal of Environmental Science,2017,54:314-327.
    [51]SUNB J,JIA S X,ZHANG S X,et al. Tillage,seasonal and depths effects on soil microbial properties in black soil of northeast China[J].Soil and Tillage Research,2016,155:421-428.
    [52]贾淑霞,孙冰洁,梁爱珍,等.耕作措施对东北黑土微生物呼吸的影响[J].中国农业科学,2015,48(9):1764-1773.JIA S X,SUN B J,LIANG A Z,et al. Effect of conservation tillage on microbial respiration of black soil[J]. Scientia Agriculutura Sinica,2015,48(9):1764-1773.
    [53]CANARINI A,KIR L P,DIJKSTRA F A. Soil carbon loss regulated by drought intensity and available substrate:A meta-analysis[J].Soil Biology and Biochemistry,2017,112:90-99.
    [54]刘四义,张晓平,梁爱珍,等.玉米和大豆秸秆还田初期对黑土CO2排放的影响[J].应用生态学报,2015,26(8):2421-2427.LIU S Y,ZHANG X P,LIANG A Z,et al. Effects of corn and soybean straws returning on CO2efflux at initial stage in black soil[J]. Chi-nese Journal of Applied Ecology,2015,26(8):2421-2427.
    [55]刘四义,贾淑霞,张晓平,等.玉米和大豆秸秆还田对黑土微生物量及呼吸的影响[J].土壤与作物,2014,3(3):105-111.LIU S Y,JIA S X,ZHANG X P,et al. Effect of corn and soybean residues return on microbial biomass and respiration in a black soil[J].Soils and Crops,2014,3(3):105-111.
    [56]RUI J P,PENGJ J,LU Y H. Succession of bacterial populations during plant residue decomposition in rice field soil[J]. Applied and Envi-ronmental Microbiology,2009,75(14):4879-4886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700