基于连续介质损伤力学的高温微动疲劳寿命预测模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-temperature fretting fatigue life prediction model based on continuum damage mechanics
  • 作者:吴博伟 ; 张宏建 ; 崔海涛 ; 王楠
  • 英文作者:WU Bowei;ZHANG Hongjian;CUI Haitao;WANG Nan;Key Laboratory of Aero-engine Thermal Environment and Structure,Ministry of Industry and Information Technology,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:微动疲劳 ; 高温 ; 寿命预测 ; 连续介质损伤力学(CDM) ; 燕尾榫结构
  • 英文关键词:fretting fatigue;;high-temperature;;life prediction;;continuum damage mechanics(CDM);;dovetail joint structure
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:南京航空航天大学能源与动力学院工信部航空发动机热环境与热结构重点实验室;
  • 出版日期:2019-03-20 12:08
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:航空动力基金(6141B090317)
  • 语种:中文;
  • 页:HKDI201903017
  • 页数:8
  • CN:03
  • ISSN:11-2297/V
  • 分类号:151-158
摘要
建立了一种基于连接介质损伤力学(CDM)的高温微动疲劳寿命预测模型用以分析航空发动机榫连接结构在不同温度下的微动疲劳寿命。该模型在现有的基于非线性疲劳损伤累积(NLCD)模型微动疲劳寿命预测模型的基础上,引入温度相关的损伤速率因子以考虑温度对榫连接结构微动疲劳行为的影响。以某型发动机钛合金TC11燕尾榫结构模拟件为研究对象开展不同温度下的微动疲劳寿命数值模拟预测研究,预测结果与试验结果相比在2倍误差范围以内,证明了此寿命预测模型的有效性。
        A high-temperature fretting fatigue life prediction model based on continuum damage mechanics(CDM)was developed to predict the fretting fatigue life of the aero engine dovetail joint structure at different temperatures.Considering the complex influence of temperature on the fretting fatigue,the temperature dependent damage rate factor was introduced in the fretting fatigue life prediction model based on non-linear continuous damage(NLCD)model.The model was used to predict the fretting fatigue life of titanium alloy TC11 dovetail joint structure of an engine simulated samples at different temperatures.Compared with the test results,the life predictions were within 2 times of the error range,proving the validity of the life prediction model.
引文
[1]文长龙,崔海涛,董磊.微动垫夹持刚度对微动疲劳寿命的影响分析[J].航空动力学报,2017,32(9):2238-2242.WEN Changlong,CUI Haitao,DONG Lei.Analysis on effect of contact pad gripping rigidity on fretting fatigue life[J].Journal of Aerospace Power,2017,32(9):2238-2242.(in Chinese)
    [2]何明鉴,张德志.确定微动疲劳寿命的附加应力法[J].航空发动机,2003,29(3):27-29.HE Mingjian,ZHANG Dezhi.Determination of fretting fatigue life by additional stress method[J].Aeroengine,2003,29(3):27-29.(in Chinese)
    [3]LYKINS C D,MALL S,JAIN V K.An evaluation of parameters for predicting fretting fatigue crack initiation[J].International Journal of Fatigue,2000,22(8):703-716.
    [4]GOLDEN P J,GRANDT A F,Jr.Fracture mechanics based fretting fatigue life predictions in Ti-6Al-4V[J].Engineering Fracture Mechanics,2004,71(15):2229-2243.
    [5]SOCIE D.Multiaxial fatigue damage models[J].Journal of Engineering Materials and Technology-Transactions,1987,109(2):292-298.
    [6]XIAO Y C,LI S,GAO Z.A continuum damage mechanics model for high cycle fatigue[J].International Journal of Fatigue,1998,20(7):503-508.
    [7]CHABOCHE J L,LESNE P M.A non-linear continuous fatigue damage model[J].Fatigue and Fracture of Engineering Materials and Structures,1988,11(1):1-17.
    [8]SHEN F,HU W,MENG Q.A damage mechanics approach to fretting fatigue life prediction with consideration of elastic-plastic damage model and wear[J].Tribology International,2015,82:176-190.
    [9]ZHAN Z,HU W,LI B,et al.Continuum damage mechanics combined with the extended finite element method for the total life prediction of a metallic component[J].International Journal of Mechanical Sciences,2017,124:48-58.
    [10]BHATTI N A,PEREIRA K,WAHAB M A.A continuum damage mechanics approach for fretting fatigue under out of phase loading[J].Tribology International,2017,117:39-51.
    [11]BHATTI N A,WAHAB M A.Fretting fatigue damage nuclea-tion under out of phase loading using a continuum damage model for non-proportional loading[J].Tribology International,2018,121:204-213.
    [12]李爱民,崔海涛,温卫东,等.基于非线性连续介质损伤力学方法的微动疲劳寿命预测[J].航空学报,2013,34(9):2122-2129.LI Aimin,CUI Haitao,WEN Weidong,et al.Prediction of fretting fatigue life based on nonlinear continuum damage mechanics[J].Acta Aeronautica et Astronautica Sinica,2013,34(9):2122-2129.(in Chinese)
    [13]KACHANOV L M.Time of the rupture process under creep conditions[J].Izvestiya Akademii Nauk SSSR Otdelenie,1958,8:26-31.
    [14]CHAUDONNERET M.An engineering tool for solving multi axial fatigue problems[R].Helsinki,Finland:International Symposium on Fatigue Design,1992.
    [15]SINES G.Behavior of metals under complex static and alternating stresses[J].Metal Fatigue,1959,1:145-169.
    [16]LYKINS C D,MALL S,JAIN V K.An evaluation of parameters for predicting fretting fatigue crack initiation[J].International Journal of Fatigue,2000,22(8):703-716.
    [17]WATERHOUSE R B.Fretting at high temperatures[J].Tribology International,1981,14(4):203-207.
    [18]戴振东,王珉,朱如鹏,等.高温复合载荷下钛合金微动疲劳特性的研究[J].应用科学学报,2001,19(3):277-282.DAI Zhendong,WANG Ming,ZHU Rupeng,et al.Study on fretting fatigue behavior of titanium alloy under high temperature combined loading[J].Journal of Applied Sciences,2001,19(3):277-282.(in Chinese)
    [19]王楠,崔海涛,张宏建.榫连接结构高温低周微动疲劳试验[J].航空动力学报,2018,33(12):3007-3012.WANG Nan,CUI Haitao,ZHANG Hongjian.Low cycle fretting fatigue tests of dovetail structure at elevated temperature[J].Journal of Aerospace Power,2018,33(12):3007-3012.(in Chinese)
    [20]北京航空材料研究所.航空发动机设计用材料数据手册[M].北京:中国航空发动机总公司,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700