Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies
  • 作者:Brandon ; Bumbaca ; Wei ; Li
  • 英文作者:Brandon Bumbaca;Wei Li;Department of Pharmaceutical Sciences,College of Pharmacy,the University of Tennessee Health Science Center;
  • 英文关键词:Castration-resistant prostate cancer;;Drug efflux transporters;;Taxane resistance;;Androgen receptor;;PI3K/AKT pathway;;Microtubules;;Cancer stem cells;;Efflux transporter
  • 中文刊名:YXBY
  • 英文刊名:药学学报(英文)
  • 机构:Department of Pharmaceutical Sciences,College of Pharmacy,the University of Tennessee Health Science Center;
  • 出版日期:2018-07-25
  • 出版单位:Acta Pharmaceutica Sinica B
  • 年:2018
  • 期:v.8
  • 基金:partially supported by NIH grants 1R01CA148706 and 1R01CA193609 to Wei Li
  • 语种:英文;
  • 页:YXBY201804007
  • 页数:12
  • CN:04
  • ISSN:10-1171/R
  • 分类号:30-41
摘要
Despite its good initial response and significant survival benefit in patients with castrationresistant prostate cancer(CRPC), taxane therapy inevitably encounters drug resistance in all patients.Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression,and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics,indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
        Despite its good initial response and significant survival benefit in patients with castrationresistant prostate cancer(CRPC), taxane therapy inevitably encounters drug resistance in all patients.Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression,and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics,indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
引文
1.Siegel RL,Miller KD,Jemal A.Cancer statistics,2018.CA:ACancer J Clin 2018;68:7-30.
    2.Zhou CK,Check DP,Lortet-Tieulent J,Laversanne M,Jemal A,Ferlay J,et al.Prostate cancer incidence in 43 populations worldwide:an analysis of time trends overall and by age group.Int JCancer 2016;138:1388-400.
    3.Edlind MP,Hsieh AC.PI3K-AKT-m TOR signaling in prostate cancer progression and androgen deprivation therapy resistance.Asian J Androl 2014;16:378-86.
    4.Zhu Y,Liu C,Armstrong C,Lou W,Sandher A,Gao AC.Antiandrogens inhibit ABCB1 efflux and ATPase activity and reverse docetaxel resistance in advanced prostate cancer.Clin Cancer Res2015;21:4133-42.
    5.Penning TM.Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer(CRPC).J Steroid Biochem Mol Biol 2015;153:105-13.
    6.Bluemn EG,Coleman IM,Lucas JM,Coleman RT,HernandezLopez S,Tharakan R,et al.Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling.Cancer Cell2017;32:474-89.e6.
    7.Fitzpatrick JM,de Wit R.Taxane mechanisms of action:potential implications for treatment sequencing in metastatic castration-resistant prostate cancer.Eur Urol 2014;65:1198-204.
    8.Lee KM,Cao D,Itami A,Pour PM,Hruban RH,Maitra A,et al.Class IIIβ-tubulin,a marker of resistance to paclitaxel,is overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia.Histopathology 2007;51:539-46.
    9.Gan L,Chen S,Wang Y,Watahiki A,Bohrer L,Sun Z,et al.Inhibition of the androgen receptor as a novel mechanism of taxol chemotherapy in prostate cancer.Cancer Res 2009;69:8386-94.
    10.Tannock IF,de Wit R,Berry WR,Horti J,Pluzanska A,Chi KN,et al.Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer.N Engl J Med 2004;351:1502-12.
    11.Kellokumpu-Lehtinen P,Tuunanen T,Asola R,Elomaa L,Heikkinen M,Kokko R,et al.Weekly paclitaxel-an effective treatment for advanced breast cancer.Anticancer Res 2013;33:2623-7.
    12.Benbow JH,Mann T,Keeler C,Fan C,Hodsdon ME,Lolis E,et al.Inhibition of paclitaxel-induced decreases in calcium signaling.JBiol Chem 2012;287:37907-16.
    13.Docetaxel and adjuvant treatment of breast cancer.Prescrire Int2011;20:149.
    14.Cella D,Peterman A,Hudgens S,Webster K,Socinski MA.Measuring the side effects of taxane therapy in oncology.Cancer2003;98:822-31.
    15.de Bono JS,Oudard S,Ozguroglu M,Hansen S,Machiels JP,Kocak I,et al.Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment:a randomised open-label trial.Lancet 2010;376:1147-54.
    16.de Bono JS,Logothetis CJ,Molina A,Fizazi K,North S,Chu L,et al.Abiraterone and increased survival in metastatic prostate cancer.N Engl J Med 2011;364:1995-2005.
    17.Scher HI,Fizazi K,Saad F,Taplin ME,Sternberg CN,Miller K,et al.Increased survival with enzalutamide in prostate cancer after chemotherapy.N Engl J Med 2012;367:1187-97.
    18.Anassi E,Ndefo UA.Sipuleucel-T(provenge)injection:the first immunotherapy agent(vaccine)for hormone-refractory prostate cancer.Pharm Ther 2011;36:197-202.
    19.Parker C,Nilsson S,Heinrich D,Helle SI,O'Sullivan JM,Foss?SD,et al.Alpha emitter radium-223 and survival in metastatic prostate cancer.N Engl J Med 2013;369:213-23.
    20.Akhmanova A,Steinmetz MO.Tracking the ends:a dynamic protein network controls the fate of microtubule tips.Nat Rev Mol Cell Biol2008;9:309-22.
    21.Nogales E,Whittaker M,Milligan RA,Downing KH.High-resolution model of the microtubule.Cell 1999;96:79-88.
    22.L?we J,Li H,Downing KH,Nogales E.Refined structure ofαβ-tubulin at 3.5?resolution.J Mol Biol 2001;313:1045-57.
    23.Prota AE,Bargsten K,Zurwerra D,Field JJ,Díaz JF,Altmann KH,et al.Molecular mechanism of action of microtubule-stabilizing anticancer agents.Science 2013;339:587-90.
    24.Wani MC,Taylor HL,Wall ME,Coggon P,Mc Phail AT.Plant antitumor agents.VI.Isolation and structure of taxol,a novel antileukemic and antitumor agent from taxus brevifolia.J Am Chem Soc 1971;93:2325-7.
    25.Parness J,Horwitz SB.Taxol binds to polymerized tubulin in vitro.JCell Biol 1981;91:479-87.
    26.Mastropaolo D,Camerman A,Luo Y,Brayer GD,Camerman N.Crystal and molecular structure of paclitaxel(taxol).Proc Natl Acad Sci U S A 1995;92:6920-4.
    27.Hoang B,Ernsting MJ,Tang WH,Bteich J,Undzys E,Kiyota T,et al.Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer.Cancer Lett 2017;410:169-79.
    28.Giannakakou P,Sackett DL,Kang YK,Zhan Z,Buters JT,Fojo T,et al.Paclitaxel-resistant human ovarian cancer cells have mutantβ-tubulins that exhibit impaired paclitaxel-driven polymerization.JBiol Chem 1997;272:17118-25.
    29.Hara T,Ushio K,Nishiwaki M,Kouno J,Araki H,Hikichi Y,et al.A mutation inβ-tubulin and a sustained dependence on androgen receptor signalling in a newly established docetaxel-resistant prostate cancer cell line.Cell Biol Int 2010;34:177-84.
    30.Gonzalez-Garay ML,Chang L,Blade K,Menick DR,Cabral FA.β-tubulin leucine cluster involved in microtubule assembly and paclitaxel resistance.J Biol Chem 1999;274:23875-82.
    31.Rao S,He L,Chakravarty S,Ojima I,Orr GA,Horwitz SB.Characterization of the taxol binding site on the microtubule.Identification of Arg282inβ-tubulin as the site of photoincorporation of a 7-benzophenone analogue of taxol.J Biol Chem1999;274:37990-4.
    32.Katsetos CD,Herman MM,M?rk SJ.Class IIIβ-tubulin in human development and cancer.Cell Motil Cytoskelet 2003;55:77-96.
    33.Terry S,Ploussard G,Allory Y,Nicolaiew N,Boissière-Michot F,MailléP,et al.Increased expression of class IIIβ-tubulin in castration-resistant human prostate cancer.Br J Cancer2009;101:951-6.
    34.Sobue S,Mizutani N,Aoyama Y,Kawamoto Y,Suzuki M,Nozawa Y,et al.Mechanism of paclitaxel resistance in a human prostate cancer cell line,PC3-PR,and its sensitization by cabazitaxel.Biochem Biophys Res Commun 2016;479:808-13.
    35.Shalli K,Brown I,Heys SD,Schofield AC.Alterations ofβ-tubulin isotypes in breast cancer cells resistant to docetaxel.FASEB J2005;19:1299-301.
    36.Hayashi Y,Kuriyama H,Umezu H,Tanaka J,Yoshimasu T,Furukawa T,et al.Class IIIβ-tubulin expression in tumor cells is correlated with resistance to docetaxel in patients with completely resected non-small-cell lung cancer.Intern Med2009;48:203-8.
    37.Ploussard G,Terry S,MailléP,Allory Y,Sirab N,Kheuang L,et al.Class IIIβ-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy.Cancer Res2010;70:9253-64.
    38.Yuan SF,Zhu LJ,Zheng WE,Chen H,Wu LL,Zhang W,et al.Expression ofβ-tubulin III and survivin in advance stage breast cancer correlates with chemotherapeutic effects of docetaxel.Asian Pac J Cancer Prev 2012;13:361-5.
    39.Duran GE,Wang YC,Francisco EB,Rose JC,Martinez FJ,Coller J,et al.Mechanisms of resistance to cabazitaxel.Mol Cancer Ther2015;14:193-201.
    40.Magnani M,Ortuso F,Soro S,Alcaro S,Tramontano A,Botta M.TheβI/βIII-tubulin isoforms and their complexes with antimitotic agents.FEBS J 2006;273:3301-10.
    41.Churchill CD,Klobukowski M,Tuszynski JA.Elucidating the mechanism of action of the clinically approved taxanes:a comprehensive comparison of local and allosteric effects.Chem Biol Drug Des 2015;86:1253-66.
    42.Hainsworth JD,Meluch AA,Lane CM,Spigel DR,Burris III HA,Gandhi JG,et al.Single agent vinflunine in the salvage treatment of patients with castration-resistant prostate cancer:a phase II trial of the sarah cannon research consortium.Cancer Investig 2010;28:275-9.
    43.Zhang C,Jing T,Wang F,Gao X,Xu C,Sun Y.Chemotherapy plus estramustine for management of castration-resistant prostate cancer:meta-analysis of randomized controlled trials.Actas Urol Esp2014;38:184-91.
    44.Grenader T,Plotkin Y,Rosengarten O.Intravenous vinorelbine as first line chemotherapy in patients with castration-resistant prostate cancer.Harefuah 2014;153:731-4,752.
    45.Delmonte A,Sessa C.AVE8062:a new combretastatin derivative vascular disrupting agent.Expert Opin Investig Drugs 2009;18:1541-8.
    46.Del Conte G,Bahleda R,Moreno V,Damian S,Perotti A,Lassau N,et al.A phase I study of ombrabulin(O)combined with bevacizumab(B)in patients with advanced solid tumors(NCT01193595).J Clin Oncol 2012;30:3080.
    47.Salmon HW,Siemann DW.Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity.Clin Cancer Res2006;12:4090-4.
    48.Al-Hajj M,Wicha MS,Benito-Hernandez A,Morrison SJ,Clarke MF.Prospective identification of tumorigenic breast cancer cells.Proc Natl Acad Sci U S A 2003;100:3983-8.
    49.Singh SK,Clarke ID,Terasaki M,Bonn VE,Hawkins C,Squire J,et al.Identification of a cancer stem cell in human brain tumors.Cancer Res 2003;63:5821-8.
    50.Collins AT,Berry PA,Hyde C,Stower MJ,Maitland NJ.Prospective identification of tumorigenic prostate cancer stem cells.Cancer Res2005;65:10946-51.
    51.O'Brien CA,Pollett A,Gallinger S,Dick JE.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.Nature 2007;445:106-10.
    52.Li C,Heidt DG,Dalerba P,Burant CF,Zhang L,Adsay V,et al.Identification of pancreatic cancer stem cells.Cancer Res2007;67:1030-7.
    53.Eramo A,Lotti F,Sette G,Pilozzi E,Biffoni M,Di Virgilio A,et al.Identification and expansion of the tumorigenic lung cancer stem cell population.Cell Death Differ 2008;15:504-14.
    54.Schatton T,Murphy GF,Frank NY,Yamaura K,Waaga-Gasser AM,Gasser M,et al.Identification of cells initiating human melanomas.Nature 2008;451:345-9.
    55.Zhang S,Balch C,Chan MW,Lai HC,Matei D,Schilder JM,et al.Identification and characterization of ovarian cancer-initiating cells from primary human tumors.Cancer Res 2008;68:4311-20.
    56.Yang ZF,Ho DW,Ng MN,Lau CK,Yu WC,Ngai P,et al.Significance of CD90tcancer stem cells in human liver cancer.Cancer Cell 2008;13:153-66.
    57.Burger PE,Gupta R,Xiong X,Ontiveros CS,Salm SN,Moscatelli D,et al.High aldehyde dehydrogenase activity:a novel functional marker of murine prostate stem/progenitor cells.Stem Cells2009;27:2220-8.
    58.van den Hoogen C,van der Horst G,Cheung H,Buijs JT,Lippitt JM,Guzmán-Ramírez N,et al.High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer.Cancer Res 2010;70:5163-73.
    59.Castellón EA,Valenzuela R,Lillo J,Castillo V,Contreras HR,Gallegos I,et al.Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different gleason grades and metastasis.Biol Res 2012;45:297-305.
    60.Mittal K,Donthamsetty S,Kaur R,Yang C,Gupta MV,Reid MD,et al.Multinucleated polyploidy drives resistance to docetaxel chemotherapy in prostate cancer.Br J Cancer 2017;116:1186-94.
    61.El-Khattouti A,Selimovic D,Ha?kel Y,Megahed M,Gomez CR,Hassan M.Identification and analysis of CD133tmelanoma stemlike cells conferring resistance to taxol:an insight into the mechanisms of their resistance and response.Cancer Lett 2014;343:123-33.
    62.Castillo V,Valenzuela R,Huidobro C,Contreras HR,Castellon EA.Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer.Int J Oncol 2014;45:985-94.
    63.Mimeault M,Johansson SL,Henichart JP,Depreux P,Batra SK.Cytotoxic effects induced by docetaxel,gefitinib,and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells.Mol Cancer Ther 2010;9:617-30.
    64.Botchkina GI,Zuniga ES,Das M,Wang Y,Wang H,Zhu S,et al.New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumorinitiating cells.Mol Cancer 2010;9:192.
    65.Botchkina GI,Zuniga ES,Rowehl RH,Park R,Bhalla R,Bialkowska AB,et al.Prostate cancer stem cell-targeted efficacy of a newgeneration taxoid,SBT-1214 and novel polyenolic zinc-binding curcuminoid,CMC2.24.PLo S One 2013;8:e69884.
    66.Ahmad G,El Sadda R,Botchkina G,Ojima I,Egan J,Amiji M.Nanoemulsion formulation of a novel taxoid DHA-SBT-1214inhibits prostate cancer stem cell-induced tumor growth.Cancer Lett2017;406:71-80.
    67.Liu C,Kelnar K,Liu B,Chen X,Calhoun-Davis T,Li H,et al.The micro RNA mi R-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.Nat Med 2011;17:211-5.
    68.Wen D,Peng Y,Lin F,Singh RK,Mahato RI.Micellar delivery of mi R-34a modulator rubone and paclitaxel in resistant prostate cancer.Cancer Res 2017;77:3244-54.
    69.Godar S,Ince TA,Bell GW,Feldser D,Donaher JL,Bergh J,et al.Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression.Cell 2008;134:62-73.
    70.Xiao Z,Li CH,Chan SL,Xu F,Feng L,Wang Y,et al.A smallmolecule modulator of the tumor-suppressor mi R34a inhibits the growth of hepatocellular carcinoma.Cancer Res 2014;74:6236-47.
    71.Xiao Z,Chen Y.Small molecule targeting mi R-34a for cancer therapy.Mol Cell Oncol 2015;2:e977160.
    72.Yun EJ,Zhou J,Lin CJ,Hernandez E,Fazli L,Gleave M,et al.Targeting cancer stem cells in castration-resistant prostate cancer.Clin Cancer Res 2016;22:670-9.
    73.Zhang Y,Jin Z,Zhou H,Ou X,Xu Y,Li H,et al.Suppression of prostate cancer progression by cancer cell stemness inhibitor napabucasin.Cancer Med 2016;5:1251-8.
    74.Boyd LK,Mao X,Lu YJ.The complexity of prostate cancer:genomic alterations and heterogeneity.Nat Rev Urol2012;9:652-64.
    75.Sissung TM,Baum CE,Deeken J,Price DK,Aragon-Ching J,Steinberg SM,et al.ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel.Clin Cancer Res 2008;14:4543-9.
    76.Oprea-Lager DE,Bijnsdorp IV,van Moorselaar RJ,van den Eertwegh AJ,Hoekstra OS,Geldof AA.ABCC4 decreases docetaxel and not cabazitaxel efficacy in prostate cancer cells in vitro.Anticancer Res 2013;33:387-91.
    77.Kawanobe T,Kogure S,Nakamura S,Sato M,Katayama K,Mitsuhashi J,et al.Expression of human ABCB5 confers resistance to taxanes and anthracyclines.Biochem Biophys Res Commun2012;418:736-41.
    78.Fumoleau P,Trigo JM,Isambert N,Sémiond D,Gupta S,Campone M.Phase I dose-finding study of cabazitaxel administered weekly in patients with advanced solid tumours.BMC Cancer 2013;13:460.
    79.Li YF,Ji HH,Zhang ZL,Zhang TT,Gan W,Zhang SF.Targeting MRP4 expression by anti-androgen treatment reverses MRP4-mediated docetaxel resistance in castration-resistant prostate cancer.Oncol Lett 2017;14:1748-56.
    80.Wang F,Zhang D,Zhang Q,Chen Y,Zheng D,Hao L,et al.Synergistic effect of folate-mediated targeting and verapamilmediated P-gp inhibition with paclitaxel-polymer micelles to overcome multi-drug resistance.Biomaterials 2011;32:9444-56.
    81.Pires MM,Emmert D,Hrycyna CA,Chmielewski J.Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers.Mol Pharmacol 2009;75:92-100.
    82.Lee K,Chae SW,Xia Y,Kim NH,Kim HJ,Rhie S,et al.Effect of coumarin derivative-mediated inhibition of P-glycoprotein on oral bioavailability and therapeutic efficacy of paclitaxel.Eur J Pharmacol 2014;723:381-8.
    83.Nehate C,Jain S,Saneja A,Khare V,Alam N,Dubey RD,et al.Paclitaxel formulations:challenges and novel delivery options.Curr Drug Deliv 2014;11:666-86.
    84.Ernsting MJ,Murakami M,Undzys E,Aman A,Press B,Li SD.Adocetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation,abraxane,in mouse tumor models with significant control of metastases.J Control Release2012;162:575-81.
    85.Hoang B,Ernsting MJ,Roy A,Murakami M,Undzys E,Li SD.Docetaxel-carboxymethylcellulose nanoparticles target cells via a sparc and albumin dependent mechanism.Biomaterials 2015;59:66-76.
    86.Roy A,Murakami M,Ernsting MJ,Hoang B,Undzys E,Li SD.Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein-mediated multidrug resistance.Mol Pharm 2014;11:2592-9.
    87.Roy A,Ernsting MJ,Undzys E,Li SD.A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors.Biomaterials 2015;52:335-46.
    88.Zhao S,Tan S,Guo Y,Huang J,Chu M,Liu H,et al.p H-sensitive docetaxel-loadedD-α-tocopheryl polyethylene glycol succinate-poly(β-amino ester)copolymer nanoparticles for overcoming multidrug resistance.Biomacromolecules 2013;14:2636-46.
    89.Tran TH,Ramasamy T,Choi JY,Nguyen HT,Pham TT,Jeong JH,et al.Tumor-targeting,p H-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells.Int J Nanomed2015;10:5249-62.
    90.Hrkach J,Von Hoff D,Mukkaram Ali M,Andrianova E,Auer J,Campbell T,et al.Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile.Sci Transl Med 2012;4:128ra39.
    91.Feldman BJ,Feldman D.The development of androgen-independent prostate cancer.Nat Rev Cancer 2001;1:34-45.
    92.Denmeade SR,Lin XS,Isaacs JT.Role of programmed(apoptotic)cell death during the progression and therapy for prostate cancer.Prostate 1996;28:251-65.
    93.Kuroda K,Liu H,Kim S,Guo M,Navarro V,Bander NH.Docetaxel down-regulates the expression of androgen receptor and prostatespecific antigen but not prostate-specific membrane antigen in prostate cancer cell lines:implications for PSA surrogacy.Prostate2009;69:1579-85.
    94.Zhu ML,Horbinski CM,Garzotto M,Qian DZ,Beer TM,Kyprianou N.Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer.Cancer Res 2010;70:7992-8002.
    95.Darshan MS,Loftus MS,Thadani-Mulero M,Levy BP,Escuin D,Zhou XK,et al.Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer.Cancer Res 2011;71:6019-29.
    96.Van Soest RJ,de Morrée ES,Kweldam CF,de Ridder CMA,Wiemer EAC,Mathijssen RHJ,et al.Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel,but not cabazitaxel,in castration-resistant prostate cancer.Eur Urol 2015;67:981-5.
    97.Cho E,Montgomery RB,Mostaghel EA.Minireview:SLCO and ABC transporters:a role for steroid transport in prostate cancer progression.Endocrinology 2014;155:4124-32.
    98.Hamada A,Sissung T,Price DK,Danesi R,Chau CH,Sharifi N,et al.Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer.Clin Cancer Res 2008;14:3312-8.
    99.Omlin A,Pezaro C,Gillessen Sommer S.Sequential use of novel therapeutics in advanced prostate cancer following docetaxel chemotherapy.Ther Adv Urol 2014;6:3-14.
    100.Malik SN,Brattain M,Ghosh PM,Troyer DA,Prihoda T,Bedolla R,et al.Immunohistochemical demonstration of phospho-Akt in high gleason grade prostate cancer.Clin Cancer Res 2002;8:1168-71.
    101.Yang SX,Costantino JP,Kim C,Mamounas EP,Nguyen D,Jeong JH,et al.Akt phosphorylation at ser473 predicts benefit of paclitaxel chemotherapy in node-positive breast cancer.J Clin Oncol2010;28:2974-81.
    102.Kosaka T,Miyajima A,Shirotake S,Suzuki E,Kikuchi E,Oya M.Long-term androgen ablation and docetaxel up-regulate phosphorylated Akt in castration resistant prostate cancer.J Urol2011;185:2376-81.
    103.Mulholland DJ,Tran LM,Li Y,Cai H,Morim A,Wang S,et al.Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth.Cancer Cell 2011;19:792-804.
    104.Carver BS,Chapinski C,Wongvipat J,Hieronymus H,Chen Y,Chandarlapaty S,et al.Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer.Cancer cell 2011;19:575-86.
    105.Xin L,Teitell MA,Lawson DA,Kwon A,Mellinghoff IK,Witte ON.Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor.Proc Natl Acad Sci U S A 2006;103:7789-94.
    106.Gonzalez-Angulo AM,Juric D,Argilés G,Schellens JH,Burris HA,Berlin J,et al.Safety,pharmacokinetics,and preliminary activity of theα-specific PI3K inhibitor BYL719:results from the first-in-human study.J Clin Oncol 2013;31:2531.
    107.Jessen K,Kessler L,Kucharski J,Guo X,Staunton J,Janes M,et al.Abstract A171:a potent and selective PI3K inhibitor,INK1117,targets human cancers harboring oncogenic PIK3CA mutations.Mol Cancer Ther 2011;10:A171.
    108.Jia S,Liu Z,Zhang S,Liu P,Zhang L,Lee SH,et al.Essential roles of PI(3)K-p110βin cell growth,metabolism and tumorigenesis.Nature 2008;454:776-9.
    109.Posadas EM,Gulley JL,Arlen PM,Trout A,Parnes HL,Wright J,et al.A phase II study of perifosine in androgen independent prostate cancer.Cancer Biol Ther 2005;4:1133-7.
    110.Chee KG,Longmate J,Quinn DI,Chatta G,Pinski J,Twardowski P,et al.The AKT inhibitor perifosine in biochemically recurrent prostate cancer:a phase II California/Pittsburgh cancer consortium trial.Clin Genitourin Cancer 2007;5:433-7.
    111.Thomas C,Lamoureux F,Crafter C,Davies BR,Beraldi E,Fazli L,et al.Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo.Mol Cancer Ther 2013;12:2342-55.
    112.Nakabayashi M,Werner L,Courtney KD,Buckle G,Oh WK,Bubley GJ,et al.Phase II trial of RAD001 and bicalutamide for castrationresistant prostate cancer.BJU Int 2012;110:1729-35.
    113.Armstrong AJ,Netto GJ,Rudek MA,Halabi S,Wood DP,Creel PA,et al.A pharmacodynamic study of rapamycin in men with intermediate-to high-risk localized prostate cancer.Clin Cancer Res 2010;16:3057-66.
    114.Templeton AJ,Dutoit V,Cathomas R,Rothermundt C,B?rtschi D,Dr?ge C,et al.Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer(SAKK 08/08).Eur Urol 2013;64:150-8.
    115.Hsieh AC,Liu Y,Edlind MP,Ingolia NT,Janes MR,Sher A,et al.The translational landscape of m TOR signalling steers cancer initiation and metastasis.Nature 2012;485:55-61.
    116.Maira SM,Stauffer F,Brueggen J,Furet P,Schnell C,Fritsch C,et al.Identification and characterization of NVP-BEZ235,a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity.Mol Cancer Ther 2008;7:1851-63.
    117.Wallin JJ,Edgar KA,Guan J,Berry M,Prior WW,Lee L,et al.GDC-0980 is a novel class I PI3K/m TOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway.Mol Cancer Ther 2011;10:2426-36.
    118.Wagner AJ,Bendell JC,Dolly S,Morgan JA,Ware JA,Fredrickson J,et al.A first-in-human phase I study to evaluate GDC-0980,an oral PI3K/m TOR inhibitor,administered QD in patients with advanced solid tumors.J Clin Oncol 2011;29:3020.
    119.Lin YH,Chen BY,Lai WT,Wu SF,Guh JH,Cheng AL,et al.The akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel(Taxol)and cisplatin in ovarian cancer cells.Naunyn Schmiedebergs Arch Pharmacol 2015;388:19-31.
    120.Nakai R,Iida S,Takahashi T,Tsujita T,Okamoto S,Takada C,et al.K858,a novel inhibitor of mitotic kinesin Eg5 and antitumor agent,induces cell death in cancer cells.Cancer Res 2009;69:3901-9.
    121.Jackson JR,Patrick DR,Dar MM,Huang PS.Targeted anti-mitotic therapies:can we improve on tubulin agents?.Nat Rev Cancer2007;7:107-17.
    122.Hauf S,Cole RW,La Terra S,Zimmer C,Schnapp G,Walter R,et al.The small molecule hesperadin reveals a role for aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint.J Cell Biol 2003;161:281-94.
    123.Lénárt P,Petronczki M,Steegmaier M,Di Fiore B,Lipp JJ,Hoffmann M,et al.The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of Polo-like kinase 1.Curr Biol2007;17:304-15.
    124.Hoar K,Chakravarty A,Rabino C,Wysong D,Bowman D,Roy N,et al.MLN8054,a small-molecule inhibitor of Aurora A,causes spindle Pole and chromosome congression defects leading to aneuploidy.Mol Cell Biol 2007;27:4513-25.
    125.Burkard ME,Randall CL,Larochelle S,Zhang C,Shokat KM,Fisher RP,et al.Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning Rho A and triggering cytokinesis in human cells.Proc Natl Acad Sci U S A 2007;104:4383-8.
    126.Mc Innes C,Mazumdar A,Mezna M,Meades C,Midgley C,Scaerou F,et al.Inhibitors of Polo-like kinase reveal roles in spindle-pole maintenance.Nat Chem Biol 2006;2:608-17.
    127.Escudier B,Eisen T,Stadler WM,Szczylik C,Oudard S,Siebels M,et al.Sorafenib in advanced clear-cell renal-cell carcinoma.N Engl JMed 2007;356:125-34.
    128.Llovet JM,Ricci S,Mazzaferro V,Hilgard P,Gane E,Blanc JF,et al.Sorafenib in advanced hepatocellular carcinoma.N Engl J Med2008;359:378-90.
    129.Rieder CL.Mitosis in vertebrates:the G2/M and M/A transitions and their associated checkpoints.Chromosome Res 2011;19:291-306.
    130.Baserga R.The relationship of the cell cycle to tumor growth and control of cell division:a review.Cancer Res 1965;25:581-95.
    131.Komlodi-Pasztor E,Sackett D,Wilkerson J,Fojo T.Mitosis is not a key target of microtubule agents in patient tumors.Nat Rev Clin Oncol 2011;8:244-50.
    132.Komlodi-Pasztor E,Sackett DL,Fojo AT.Inhibitors targeting mitosis:tales of how great drugs against a promising target were brought down by a flawed rationale.Clin Cancer Res 2012;18:51-63.
    133.Dillard PR,Lin MF,Khan SA.Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol.Mol Cell Endocrinol2008;295:115-20.
    134.Titus MA,Schell MJ,Lih FB,Tomer KB,Mohler JL.Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer.Clin Cancer Res 2005;11:4653-7.
    135.Singh P,Uzgare A,Litvinov I,Denmeade SR,Isaacs JT.Combinatorial androgen receptor targeted therapy for prostate cancer.Endocr Relat Cancer 2006;13:653-66.
    136.Ingersoll MA,Miller DR,Martinez O,Wakefield CB,Hsieh KC,Simha MV,et al.Statin derivatives as therapeutic agents for castration-resistant prostate cancer.Cancer Lett 2016;383:94-105.
    137.Souchek JJ,Davis AL,Hill TK,Holmes MB,Qi B,Singh PK,et al.Combination treatment with orlistat-containing nanoparticles and taxanes is synergistic and enhances microtubule stability in taxaneresistant prostate cancer cells.Mol Cancer Ther 2017;16:1819-30.
    138.Yang PY,Liu K,Ngai MH,Lear MJ,Wenk MR,Yao SQ.Activitybased proteome profiling of potential cellular targets of orlistat-an FDA-approved drug with anti-tumor activities.J Am Chem Soc2010;132:656-66.
    139.Qiu LY,Yan L,Zhang L,Jin YM,Zhao QH.Folate-modified poly(2-ethyl-2-oxazoline)as hydrophilic corona in polymeric micelles for enhanced intracellular doxorubicin delivery.Int J Pharm2013;456:315-24.
    140.Struss WJ,Tan Z,Zachkani P,Moskalev I,Jackson JK,Shademani A,et al.Magnetically-actuated drug delivery device(MADDD)for minimally invasive treatment of prostate cancer:an in vivo animal pilot study.Prostate 2017;77:1356-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700