CCT family genes in cereal crops:A current overview
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CCT family genes in cereal crops:A current overview
  • 作者:Yipu ; Li ; Mingliang ; Xu
  • 英文作者:Yipu Li;Mingliang Xu;National Maize Improvement Center of China, China Agricultural University;
  • 英文关键词:CCT domain;;Flowering time;;Photoperiod;;Pleiotropy
  • 中文刊名:CROP
  • 英文刊名:作物学报(英文版)
  • 机构:National Maize Improvement Center of China, China Agricultural University;
  • 出版日期:2017-12-15
  • 出版单位:The Crop Journal
  • 年:2017
  • 期:v.5
  • 基金:financially supported by the Key Project of Beijing Municipal Science & Technology Commission (D16110500060000);; the National Key Technology R&D Program of China (2014BAD01B09)
  • 语种:英文;
  • 页:CROP201706001
  • 页数:10
  • CN:06
  • ISSN:10-1112/S
  • 分类号:3-12
摘要
Control of flowering time is crucial for reproductive success of cereal crops, and has a significant impact on grain yield as well as adaptation to diverse environmental conditions.Plants integrate signals from both environmental cues and endogenous regulatory pathways to fine-tune flowering time. The CCT domain originally described to a 43-amino acid sequence at the C-terminus of three Arabidopsis proteins, namely CONSTANS(CO),CO-LIKE, and TIMING OF CAB1(TOC1). The CCT domain-containing genes(CCT genes),which encode transcription co-factors, are the major genetic determinants that modulate flowering time, and this in turn enables plants to effectively expand their territory to take advantage of favorable habitats. Moreover, certain CCT genes have pleiotropic effects on morphological traits and confer resistance/tolerance to biotic/abiotic stresses. CCT genes can be classified into three families, namely COL(CONSTANS-like), PRR(Pseudo-response regulator), and CMF(CCT motif family),based on their non-CCT domains. During domestication, natural and artificial selection resulted in reduced nucleotide diversity of CCT genes in modern cultivated cereals than their wild types. Here, we review the features and functions of CCT genes in cereal crops and propose future research to focus on CCT genes and their utilization in crop breeding.
        Control of flowering time is crucial for reproductive success of cereal crops, and has a significant impact on grain yield as well as adaptation to diverse environmental conditions.Plants integrate signals from both environmental cues and endogenous regulatory pathways to fine-tune flowering time. The CCT domain originally described to a 43-amino acid sequence at the C-terminus of three Arabidopsis proteins, namely CONSTANS(CO),CO-LIKE, and TIMING OF CAB1(TOC1). The CCT domain-containing genes(CCT genes),which encode transcription co-factors, are the major genetic determinants that modulate flowering time, and this in turn enables plants to effectively expand their territory to take advantage of favorable habitats. Moreover, certain CCT genes have pleiotropic effects on morphological traits and confer resistance/tolerance to biotic/abiotic stresses. CCT genes can be classified into three families, namely COL(CONSTANS-like), PRR(Pseudo-response regulator), and CMF(CCT motif family),based on their non-CCT domains. During domestication, natural and artificial selection resulted in reduced nucleotide diversity of CCT genes in modern cultivated cereals than their wild types. Here, we review the features and functions of CCT genes in cereal crops and propose future research to focus on CCT genes and their utilization in crop breeding.
引文
[1]J.S.Jeon,K.H.Jung,H.B.Kim,J.P.Suh,G.S.Khush,Genetic and nmolecular insights into the enhancement of rice yield potential,J.Plant Biol.S4(2011)1-9.
    [2]J.Colasanti,V.Coneva,Mechanisnms of floral induction in grasses:something borrowed,soimething new,Plant Physiol.149(2009)56-62.
    [3]F.Andres,G.Coupland,The genetic basis of flowering responses to seasonal cues,Nat.Rev.Genet.13(2012)627-639.
    [4]J.Putterill,F.Robson,K.Lee,R.Simon,G.Coupland,The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors,Cell 80(1995)847-857.
    [5]F.Robson,M.M.R.Costa,S.R.Hepworth,I.Vizir,P.H.Reeves,J.Putterill,G.Coupland,Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants,Plant J.28(2001)619-631.
    [6]S.Wenkel,F.Turck,K.Singer,L.Gissot,J.Le Gourrierec,A.Samach,G.Coupland,CONSTANS and the CCAAT box binding complex share a functionally important dormain and interact to regulate flowering of Arabidopsis,Plant Cell 18(2006)2971-2984.
    [7]W.Y.Xue,Y.Z.Xing,X.Y.Weng,Y.Zhao,W.J.Tang,L.Wang,H.J.Zhou,S.B.Yu,C.G.Xu,X.H.Li,Q.F.Zhang,Natural variation in Gad7 is an important regulator of heading date and yield potential in rice,Nat.Genet.40(2008)761-767.
    [8]Y.Qin,Z.Li,W.Q.Li,L.X.Ku,C.Wang,J.R.Ye,K.Li,N.Yang,Y.P.Li,T.Zhong,J.S.Li,Y.H.Chen,J.B.Yan,X.H.Yang,M.L.Xu,CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated thepostdomestication spread of maize,Proc.Natl.Acad.Sci.U.S.A.110(2013)16969-16974.
    [9]J.Cockram,T.Thiel,B.Steuemagel,N.Stein,S.Taudien,P.C.Bailey,D.M.O'Sullivan,Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae,PLoS One 7(2012),e45307.
    [10]S.B.Tiwari,Y.Shen,H.C.Chang,Y.Hou,A.Harris,S.F.Ma,M.McPartland,G.J.Hymus,L.Adam,C.Marion,The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element,New Phytol.187(2010)57-66.
    [11]W.X.Wu,X.M.Zheng,G.W.Lu,Z.Z.Zhong,H.Gao,L..P.Chen,C.Y.Wu,H.J.Wang,Q.Wang,K.N.Zhou,J.L.Wang,F.Q.VWu,X.Zhang,X.P.Guo,Z.J.Cheng,C.L.Lei,Q.B.Lin,L.Jiang,H.Y.Wang,S.Ge,J.M.Wan,Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia,Proc.Natl.Acad.Sci.U.S.A.110(2013)2775-2780.
    [12]X.Y.Weng,L.Wang,J.Wang,Y.Hu,H.Du,C.G.Xu,Y.Z.Xing,X.H.Li,J.H.Xiao,Q.F.Zhang,Grain number,plant height,and heading date7 is a central regulator of growth,development,and stress response,Plant Physiol.164(2014)735-747.
    [13]E.Ando,M.Ohnishi,Y.Wang,T.Matsushita,A.Watanabe,Y.Hayashi,M.Fujii,J.F.Ma,S.Inoue,T.Kinoshita,TWIN SISTER OF FT,GIGANTEA,and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis,Plant Physiol.162(2013)1529-1538.
    [14] L.Corbesier,C.Vincent,S.Jang,F.Fomara,Q.Z.Fan,1.Searle,A.Giakountis,S.Farrona,L.Gissot,C.Turnbull,G.Coupland,FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis,Science 316(2007)1030-1033.
    [15]S.Tamaki,S.Matsuo,H.L.Wong,S.Yokoi,K.Shimamoto,Hd3a protein is a mobile flowering signal in rice,Science 316(2007)1033-1036.
    [16]J.Mathieu,N.Warthmann,F.K(u|¨)ttner,M.Schmid,Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis,Curr.Biol.17(2007)1055-1060.
    [17]C.Campoli,B.Drosse,I.Searle,G.Coupland,M.von Korff,Functional characterisation of HuCO1,the barley(Hordeum vulgare)flowering time ortholog of CONSTANS,Plant J.69(2012)868-880.
    [18]S.Fowler,K.Lee,H.Onouchi,A.Samach,K.Richardson,B.Morris,G.Coupland,J.Putterill,GIGANTEA:a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains,EMBO J.18(1999)4679-4688.
    [19]D.H.Park,D.E.Somers,Y.S.Kim,Y.H.Choy,H.K.Lim,M.S.Soh,H.J.Kim,S.A.Kay,H.G.Nam,Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene,Science 285(1999)1579-1582.
    [20]F.Turck,F.Fornara,G.Coupland,Regulation and identity of florigen,FLOWERING LOCUS T moves center stage,Annu.Rev.Plant Biol.59(2008)573-594.
    [21]R.Sibout,S.Plantegenet,C.S.Hardtke,Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root,Curr.Biol.18(2008)458-463.
    [22]S.Datta,G.Hettiarachchi,X.W.Deng,M.Holm,Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth,Plant Cell 18(2006)70-84.
    [23]X.F.Cheng,Z.Y.Wang,Overexpression of COL9,a CONSTANS-LIKE gene,delays flowering by reducing expression of CO and FT in Arabidopsis thaliana,Pl,ant J.43(2005)758-768.
    [24]M.Hassidim,Y.Harir,E.Yakir,1.Kron,R.M.Green,Overexpression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis,Planta 230(2009)481-191.
    [25]H.G.Wang,Z.L.Zhang,H.Y.Li,X.Y.Zhao,X.M.Liu,M.Ortiz,C.T.Lin,B.Liu,CONSTANS-LIKE 7 regulates branching andshade avoidance response in Arobidopsis,J.Exp.Bot.64(2013)1017-1024.
    [26]J.H.Min,J.S.Chung,K.H.Lee,C.S.Kim,The CONSTANS-like 4transcription factor,AtCOL4,positively regulates abiotic stress tolerance through an abseisic acid-dependent manner in Arabidopsis,J.Integr.Plant Biol.57(2015)313-324.
    [27]C.Strayer,T.Oyama,T.F.Schultz,R.Raman,D.E.Somers,P.Mas,S.Panda,J.A.Kreps,S.A.Kay,Cloning of the Arabidopsis clock gene TOCI,an autoregUlatory response regulator homolog,Science 289(2000)768-771.
    [28]D.Alabadi,T.Oyama,M.J.Yanovsky,F.G.Harmon,P.Mas,S.A.Kay,Reciprocal regulation between TOCI and LHY/CCAI within the Arabidopsis circadian clock,Science 293(2001)880-883.
    [29]N.Nakamichi,T.Kiba,R.Henriques,T.Mizuno,N.H.Chua,H.Sakakibara,PSEUDO-RESPONSE REGULATORS 9,7,and 5 are transcriptional repressors in the Arabidopsis circadian clock,Plant Cell 22(2010)594-605.
    [30] M.Yano,Y.Katayose,M.Ashikari,U.Yamanouchi,L.Monna,T.Fuse,'T.Baba,K.Yamamoto,Y.Umehara,Y.Nagamura,Hdl,a major photoperiod sensitivity quantita?tive trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS,Plant Cell 12(2000)2473一2483.
    [31]N.Endo-Higashi,T.Izawa,Flowering time genes Heading date1 and Early heading date 1 together control panicle develop?ment in rice,Plant Cell Physiol.52(2011)1083-1094.
    [32]S.K.Kim,C.H.Yun,J.H.Lee,Y.H.Jang,H.Y.Park,J.K.Kim,osC03,a CONSTANS-LIKE gene,controls flowering by nega?tively regulating the expression of FT-like genes under SD conditions in rice,Planta 228(2008)355-365.
    [33]Y.S.Lee,D.H.Jeong,D.Y.Lee,J.Yi,C.H.Ryu,S.L.Kim,H.J.Jeong,S.C.Choi,P.Jin,J.Yang,L.H.Cho,H.Choi,G.An,OsCOL4 is a constitutive flowering repressor upstream of Ehd1and downstream of OsphyB,Plant J.63(2010)18-30.
    [34]J J.Tan,M.N.Jin,J.C.Wang,F.Q.Wu,P.K.Sheng,Z J.Cheng,J.L.Wang,X.M.Zheng,IL.P.Chen,M.Wang,S.S.Zhu,X.P.Guo,X.Zhang,X.从.Liu,C.M.Wang,H.Y.Wang,C.Y.Wu,J.M.Wan,OsCOLlO,a CONSTANS-Like gene,functions as a flowering time repressor downstream of Ghd7 in rice,Plant Cell Physiol.57(2016)798-812.
    [35]H.Liu,S.Y.Dong,D.Y.Sun,W.Liu,F.W.Gu,Y.Z.Liu,T.Guo,H.Wang,J.F.Wang,Z.Q.Chcn,CONSTANS-like 9(OsCOL9)interacts with receptor for activated C-kinase 1(OsRACKI)to regulate blast resistance through salicylic acid and ethylene signaling pathways,PLoS One 11(2016),e0166249.
    [36]J.H.Liu,J.Q.Shen,Y.Xu,X.H.Li,J.H.Xiao,L.Z.Xiong,Ghd2,a CONSTANS-like gene,confers drought sensitivity through regulation of senescence in rice,J.Exp.Bot.67(2016)5785-5798.
    [37]J.Q.Shen,J.H.Liu,K.B.Xie,F.Xing,F.Xiong,J.H.Xiao,X.H.Li,L.Z.Xiong,Translational repression by a miniature invertedrepeat transposable element in the 3'untranslated region,Nat.Commun.8(2017)14651.
    [38]H.Gao,M.N.Jin,X.M.Zheng,J.Chen,D.Y.Yuan,Y.Y.Xin,M.Q.Wang,D.Y.Huang,Z.Zhang,K.N.Zhou,P.K.Sheng,J.Ma,W.W.Ma,H.F.Deng,L.Jiang,S.J.Liu,H.Y.Wang,C.Y.Wu,L.P.Yuan,J.M.Wan,Days to heading 7,a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice,Proc.Natl.Acad.Sci.U.S.A.111(2014)16337-16342.
    [39]W.H.Yan,H.Y.Liu,X.C.Zhou,Q.P.Li,J.Zhang,L.Lu,T.M.Liu,H.J.Liu,C.J.Zhang,Z.Y.Zhang,GJ.Shen,W.Yao,H.X.Chen,S.B.Yu,W.B.Xie,Y.Z.Xing,Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice,Cell Res.23(2013)969-971.
    [40]N.Nakamichi,Adaptation to local environment by modifi?cations of photoperiod response in crops,Plant Cell Physiol.56(2014)594-604.
    [41]Y.Nemoto,Y.Nonoue,M.Yano,T.Izawa,Hd1,a CONSTANS ortholog in rice,functions as an EhdI repressor through interaction with monocot-specific CCT-domain protein Ghd7,Plant J.86(2016)221-233.
    [42]L.Zhang,Q.P.Li,H.J.Dong,Q.He,L.W.Liang,C.Tan,Z.M.Han,W.Yao,G.W.Li,H.Zhao,W.B.Xie,Y.Z.Xing,Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice,Sci Rep 5(2015)7663.
    [43]T.A.Miller,E.H.Muslin,J.E.Dorweiler,A maize CONSTANSlike gene,conzl,exhibits distinct diurnal expression patterns in varied photoperiods,Planta 227(2008)1377-1388.
    [44]H.Y.Hung,L.M.Shannon,F.Tian,P.J.Bradbury,C.Chen,S.A.Flint-Garcia,M.D.McMullen,D.Ware,E.S.Buckler,J.F.Doebley,J.B.Hollanda,ZmCCT and the genetic basis of daylength adaptation underlying the postdomestication spread of maize,Proc.Natl.Acad.Sci.U.S.A.109(2012)1913-1921.
    [45]C.Wang,Q.Yang,W.X.Wang,Y.P.Li,Y.L.Guo,D.F.Zhang,X.N.Ma,W.Song,J.R.Zhao,M.L.Xu,A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize,New Phytol.(2017)https://doi.org/10.1111/nph.14688.
    [46]G.H.Xu,X.F.Wang,C.Huang,D.Y.Xu,D.Li,J.G.Tian,Q.Y.Chen,C.L.Wang,Y.M.Liang,Y.Y.Wu,X.H.Yang,F.Tian,Complex genetic architecture underlies maize tassel domes?tication,New Phytol.214(2017)852-864.
    [47]J.A.R.Navarro,M.Willcox,J.Burgueno,C.Romay,K.Swarts,S.Trachsel,E.Preciado,A.Terron,H.V.Delgado,V.Vidal,A.Ortega,A.E.Banda,N.O.G.Montiel,1.Ortiz-Monasterio,F.S.Vicente,A.G.Espinoza,G.Atlin,P.Wenzl,S.Hearne,E.S.Buckler,A study of allelic diversity underlying flowering-time adaptation in maize landraces,Nat.Genet.49(2017)476-480.
    [48]S.S.Yang,B.D.Weers,D.T.Morishige,J.E.Mullet,CONSTANS is a photoperiod regulated activator of flowering in sorghum,BMC Plant Biol.14(2014)148.
    [49]H.H.Liu,H.Q.Liu,L.N.Zhou,Z.H.Zhang,X.X.Zhang,M.L.Wang,H.X.Li,Z.W.Lin,Parallel domestication of the heading date 1 gene in cereals,Mol.Biol.Evol.32(2015)2726-2737.
    [50]S.S.Yang,R.L.Murphy,D.T.Morishige,P.E.Klein,W.L.Rooney,J.E.Mullet,Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37and SbGHD7,repressors of SbEHDl,SbCN8 and SbCN12,PLoS One 9(2014),el05352.
    [51]A.Turner,J.Beales,S.Faure,R.P.Dunford,D.A.Laurie,The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley,Science 310(2005)1031-1034.
    [52]L.Yan,A.Loukoianov,G.Tranquilli,M.Helguera,T.Fahima,J.Dubcovsky,Positional cloning of the wheat vermalization gene VRN1,Proc.Natl.Acad.Sci.U.S.A.100(2003)6263-6268.
    [53]Y.Nemoto,M.Kisaka,T.Fuse,M.Yano,Y.Ogihara,Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice,Plant J.36(2003)82-93.
    [54]L.L.Yan,A.Loukoianov,A.Blechl,G.Tranquilli,W.Ramakrishna,P.SanMiguel,J.L.Bennetzen,V.Echenique,J.Dubcovsky,The wheat VRN2 gene is a flowering repressor down-regulated by vernalizatioin,Science 303(2004)1640-1644.
    [55]J.Dubcovsky,A.Loukoianov,D.L.Fu,M.Valarik,A.Sanchez,L.L.Yan,Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2,Plant Mol.Biol.60(2006)469-480.
    [56]J.Beales,A.Turner,S.Griffiths,J.W.Snape,D.A.Laurie,A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-Dla mutant of wheat(Triticum aestivum L.),Theor.Appl.Genet.115(2007)721-733.
    [57]E.P.Wilhelm,A.S.Turner,D.A.Laurie,Photoperiod insensitive Ppd-Ala mutations in tetraploid wheat(Triticum durum Desf.),Theor.Appl.Genet.118(2009)285-294.
    [58]H.Nishida,T.Yoshida,K.Kawakami,M.Fujita,B.Long,Y.Akashi,D.A.Laurie,K.Kato,Structural variation in the 5'upstream region of plhotopcriod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wlheat(Triticum aestivum L.),and their effect on heading tinme,Mol.Breed.31(2013)27-37.
    [59]A.Diaz,M.Ziklhali,A.S.Turner,P.Isaac,D.A.Laurie,Copy number variation affectiing the Photoperiod-31 and Vernalization-A1 genes i.s associated with altered flowering time in wheat(Triticum aestivum),PLoS One 7(2012),633234.
    [60]H.Sun,Z.A.Guo,L.F.Gao,G.Y.Zhao,W.P.Zhang,R.H.Zhou,Y.Z.Wu,H.Y.Wang,H.L.An,J.Z.Jia,DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat(Triticurm aestiv。。),New Phytol.204(2014)682-692.
    [61]N.D.Gonzalez-Schain,M.Diaz-Mendoza,M.Zurczak,P.Suarez-Lopez,Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner,Plant J.70(2012)678-690.
    [62]T.Izawa,Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice,J.Exp.Bot.58(2007)3091-3097.
    [63]R.S.Meyer,M.D.Purugganan,Evolution of crop species:genetics of domestication and diversification,Nat.Rev.Genet.14(2013)840-852.
    [64]M.D.Purugganan,D.Q.Fuller,The nature of selection during plant domestication,Nature 457(2009)843-848.
    [65]J.Zhang,X.C.Zhou,W.H.Yan,Z.Y.Zhang,L.Lu,Z.M.Han,H.Zhao,H.Y.Liu,P.Song,Y.Hu,G.J.Shen,Q.He,S.B.Guo,G.Q.Gao,G.W.Wang,Y.Z.Xing,Combinations of the CGhd7,(Ghd8and HdI genes largely define the ecogeographical adaptation and yield potential of cultivated rice,New Phytol.208(2015)1056-1066.
    [66]Y.J.Yang,C.Ma,Y.J.Xu,Q.Wei,M.Imtiaz,H.B.Lan,S.Gao,L.N.Cheng,M.Y.Wang,Z.J.Fei,B.Hong,J.P.Gao,A zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellirn biosynthesis,Plaint Cell 26(2014)2038-2054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700