微米与纳米级CaCO_3对油井水泥石酸溶特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Micron-CaCO_3 and Nano-CaCO_3 on the Acid-soluble Performance of Oil-well Cement Stone
  • 作者:李早元 ; 祁凌 ; 辜涛 ; 孙劲飞 ; 郭小阳
  • 英文作者:LI Zao-yuan;QI Ling;GU Tao;SUN Jin-fei;GUO Xiao-yang;Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University;
  • 关键词:微米CaCO3 ; 纳米CaCO3 ; 油井水泥石 ; 酸溶特性 ; 抗压强度
  • 英文关键词:micron-CaCO3;;nano-CaCO3;;oil-well cement stone;;acid-soluble performance;;compressive strength
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:西南石油大学油气藏地质及开发工程国家重点实验室;
  • 出版日期:2018-08-15
  • 出版单位:硅酸盐通报
  • 年:2018
  • 期:v.37;No.263
  • 基金:国家自然科学基金(5157041530)
  • 语种:中文;
  • 页:GSYT201808039
  • 页数:7
  • CN:08
  • ISSN:11-5440/TQ
  • 分类号:227-233
摘要
为解决油井水泥浆对油气储层的污染问题,优化水泥浆的储层保护性能,开展了微米与纳米级CaCO_3对水泥石酸溶特性的影响研究。试验结果表明,微米与纳米CaCO_3的复合最优掺量为18.5%与1.5%,此时水泥石的抗压强度较基准组无较大降幅,其在盐酸中的2 h酸溶率提升至67.5%。结合XRD、热分析及扫描电镜结果,可知复掺纳米CaCO_3,晶核效应与高温水湿环境的共同作用下,激活了火山灰反应的活性,Ca(OH)_2与SiO_2明显被消耗,水泥石结构密实,强度提升;经盐酸2 h腐蚀后,掺入CaCO_3的水泥石表层较基准组的侵蚀程度更为严重,水化产层出现了明显脱落痕迹,残留物仅为未反应完全的硅灰,同时水泥石内部发现了C-S-H与Ca(OH)_2的被腐蚀痕迹,H+的渗透效果显著增强,油井水泥石的酸溶特性得到大幅提升的同时,有效保障了其在井下的有效封固能力。
        In order to solve the pollution of oil-well cement paste on oil and gas reservoir,improving the reservoir protection performance of cement paste,the effect of micron-CaCO_3 and nano-CaCO_3 on acidsoluble performance of oil-well cement stone were carried out to study in this paper.The experimental results indicated that optimal dosage of micron-CaCO_3 and nano-CaCO_3 was 18.5% and 1.5%respectively,the compressive strength in this dosage had no evident decreasing amplitude and the acidsoluble rate increased to 67.5% in 2 h corrosion compared with the plain specimen.Combined with Xray diffraction,thermoanalysis and scanning electron microscope experiment,it could be concluded that Ca(OH)_2 and SiO_2 were obviously consumed after the addition of nano-CaCO_3,on account of the activity of pozzolanic reaction was activated synergistically in the high temperature and water wet environment,the structure of cement stone became denser and compressive strength improved.After 2 h corrosion of 15%hydrochloric acid,the surface layer mixed with CaCO_3 was more corrosive than the plain specimen,obvious shedding marks were appeared on the hydration production layer,the main residue was silicon fume that had not been fully reacted,the corrosion marks of C-S-H gel and Ca(OH)_2 crystal were found in the core of cement stone,the permeation ability of H+increased.The acid solubility of the oil well cement had been greatly improved,and its effective sealing ability was vigorously guaranteed.
引文
[1]罗解.固井水泥浆对碎屑岩储层的损害研究[D].成都:西南石油大学,2016.
    [2]Lee H,Hudson M,Rondon J,et al.Particle size distribution acid soluble cement[R].SPE 178683,2015.
    [3]卢都友,张少华,徐江涛,等.石灰石微粉与偏高岭土复合对水泥强度和水化产物的影响[J].硅酸盐学报,2017,45(5):662-667.
    [4]Courard L,Michel F.Limestone fillers cement based composites:effects of blast furnace slags on fresh and hardened properties[J].Constr Build Mater,2014,51(1):439-445.
    [5]Antoni M,Rossen J,Martirena F,et al.Cement substitution by a combination of metakaolin and limestone[J].Cem.Concr.Res.,2012,42(12):1579-1589.
    [6]Lawrence P,Cyr M,Ringot E.Mineral admixtures in mortars:effect of inert materials on short-term hydration[J].Cement&Concrete Research,2003,33(12):1939-1947.
    [7]Gyu D M,Sungwoo O,Sang H J,et al.Effects of fineness of limestone powder and cement on the hydration and strength development of PLC concrete[J].Constr Build Mater,2017,135:129-136.
    [8]Luke K,Soucy K.Test method to optimize acid-soluble cement for unconventional gas completions[R].SPE 114759,2008.
    [9]Pliya P,Cree D.Limestone derived eggshell powder as a replacement in Portland cement mortar[J].Constr.Build.Mater.,2015,95:1-9.
    [10]Liu S,Yan P.Effect of limestone powder on microstructure of concrete[J].Journal of Wuhan University of Technology,2010,25(2):328-331.
    [11]Tsivilis S,Chaniotakis E,Badogiannis E,et al.A study on the parameters affecting the properties of Portland limestone cements[J].Cem.Concr.Compos.,1999,21(2):107-116.
    [12]Pacheco T F,Jalali S.Nanotechnology:advantages and drawbacks in the field of construction and building materials[J].Constr.Build.Mater.,2011,25(2):582-590.
    [13]Florence S,Konstantin S.Nanotechnology in concrete-a review[J].Constr.Build.Mater.,2010,24(11):2060-2071.
    [14]Meng T,Yu Y,Wang Z.Effect of nano-Ca CO3slurry on the mechanical properties and micro-structure of concrete with and without fly ash[J].Compos.Part B,2017(117):124-129.
    [15]Sato T,Diallo.Seeding effect of nano-Ca CO3on the hydration of tricalcium silicate[J].Transp.Res.Rec.,2010,2141:61-67.
    [16]Sato T,Beaudoin J.Effect of nano-Ca CO3on hydration of cement containing supplementary cementious materials[J].Adv.Cem.Res.,2010,23(1):33-43.
    [17]Li W,Huang Z,Cao F.Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix[J].Constr.Build.Mater.,2015(95):366-374.
    [18]刘志辉,邵伟,兰祥辉,等.水泥粉煤灰复合浆体中粉煤灰的火山灰反应程度[J].建筑材料学报,2011,14(2):169-172.
    [19]郭小阳,辜涛,李早元,等.水湿环境下硫化氢对固井水泥石的腐蚀机理[J].天然气工业,2015,35(10):1-6.
    [20]Kjellsen K O,Detwiler R J,Gjorv O E.Development of microstructures in plain cement pastes hydrated at different temperatures[J].Cem.Concr.Res.,1991,21(1):179-189.
    [21]Cao Y J,Detwiler R J.Backscattered electron imaging of cement pastes cured at elevated temperatures[J].Cem.Concr.Res.,1995,25(3):627-638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700