直驱式潮汐能反渗透海水淡化系统性能计算模型及分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Computational Model for Performance Analysis of Direct-driven Tidal Energy Reverse Osmosis Seawater Desalination System
  • 作者:陈明丰 ; 张明宇 ; 凌长明
  • 英文作者:CHEN Ming-Feng;ZHANG Ming-Yu;LING Chang-Ming;Shenzhen Institute of Guangdong Ocean University;School of Mechanical and Power Engineering,Guangdong Ocean University;
  • 关键词:潮汐能 ; 海水淡化 ; 反渗透 ; 计算模型
  • 英文关键词:tidal energy;;seawater desalination;;reverse osmosis;;computational model
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:广东海洋大学深圳研究院;广东海洋大学机械与动力工程学院;
  • 出版日期:2019-06-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:广东省科技计划项目(No.2016A010104021,No.2017A010104011);; 深圳市科技计划项目(No.JCYJ20170306162116012)
  • 语种:中文;
  • 页:GCRB201906002
  • 页数:8
  • CN:06
  • ISSN:11-2091/O4
  • 分类号:9-16
摘要
建立了直驱式潮汐能反渗透海水淡化系统的性能计算模型,考察了潮汐泄湖内外形成的水位差对水轮机和高压泵流量、膜元件产水流量和回收率以及系统总效率的影响,分析了水轮机不同额定水头以及高压泵不同出口压力的情况下系统性能的变化规律。结果表明:随着水位差的增大,膜元件产水流量先增大而后减小,回收率先减小而后增大,系统总效率不断下降随后逐渐趋于平缓;增加高压泵输出的进料海水压力,有利于增加膜元件产水流量和回收率以及提高系统总效率;采用较大额定水头的水轮机,有利于增加膜元件产水流量,但会导致回收率下降,且其对系统总效率的影响不明显。
        A computational model for performance analysis of the direct-driven tidal energy reverse osmosis seawater desalination system is built in this article. The effect of water heads which are formed by the water levels of inside and outside of the tidal lagoon on the hydraulic turbine flow rate, high-pressure pump flow rate, permeate flow rate and recovery rate of the membrane element,and system total efficiency are theoretically investigated. The system performances under different hydraulic turbine rated head and different high-pressure pump outlet pressure are also studied.The results showed that the permeate flow rate of the membrane element tend to be increase at first and then decrease with the increase of water head, and the recovery rate shows an opposite change against permeate flow rate with the increase of water head, and the system total efficiency is decrease with the increase of water head. It is also found that the permeate flow rate and recovery rate of the membrane element are increase due to a higher pressure seawater which is outputted from the high-pressure pump, and finally the system total efficiency is increase. When a higher rated head of the hydraulic turbine is adopted, the permeate flow rate of the membrane element will increase, but the recovery rate will decrease, and the change of the system total efficiency is very small.
引文
[1] Semiat R. Energy Issues in Desalination Processes[J]. Environmental Science&Technology, 2008, 42(22):8193-8201
    [2] Zhenyu Li, Afreen Siddiqi, Laura Diaz Anadon, et al. Towards Sustainability in Water-energy Nexus:Ocean Energy for Seawater Desalination[J]. Renewable&Sustainable Energy Reviews, 2018, 82:3833-3847
    [3]凌长明.陈明丰,徐青.等.潮汐能聚能增压方案的热力学性能分析[J].中国电机工程学报,2015, 35(4):906-912Ling C, Chen M, Xu Q, et al. Thermodynamic Analysis on Plan of Seawater Pressurization Driven by Tidal Energy[J]. Proceedings of the CSEE, 2015, 35(4):906-912
    [4]魏守平.现代水轮机调节技术[M].武汉:华中科技大学出版社,2002Wei Shouping. Modern Hydraulic Turbine RegulationTechnology[M]. Wuhan:Huazhong University of Science&Technology Press, 2002.
    [5]凌长明,娄晓博,王逸飞,等.潮汐能直接驱动海水淡化方法的优势分析[J].广州航海学院学报,2018, 28(1):37-42Ling C, Lou X, Wang Y, et al. Analysis of the Advantages of the Method That Tidal Power Directly Drives Seawater Desalination[J]. Journal of Guangzhou Maritime University, 2018, 26(1):39-42
    [6]郑章靖.利用潮汐能的新型反渗透海水淡化工艺及装置的研究[D].湛江:广东海洋大学,2011Zheng Zhangjing. A Study on the Technology and Plant of an Innovative Tidal-powered Reverse Osmosis Desalination[D]. Zhanjiang:Guangdong Ocean University, 2011
    [7]雷顺安.潮汐能直接驱动海水淡化的装置系统及其试验研究[D].湛江:广东海洋大学,2015Lei Shunan. Experimental Study on a New Desalination Device System Driven by Tidal Power Directly[D]. Zhanjiang:Guangdong Ocean University, 2015
    [8]王逸飞.潮汐能直接驱动的反渗透海水淡化系统性能研究[D].湛江:广东海洋大学,2013Wang Yifei. Performance Study on Reverse Osmosis Desalination System Was Driven by Tidal Energy Directly[D]. Zhanjiang:Guangdong Ocean University, 2013
    [9] Ling C, Wang Y, Min C, Zhang Y. Economic Evaluation of Reverse Osmosis Desalination System Coupled With Tidal Energy[J]. Frontiers in Energy, 2018, 12(2):297-304
    [10] Bejan A. Maximum Power From Fluid Flow[J]. International Journal of Heat&Mass Transfer, 1996, 39(6):1175-1181
    [11] Chen L, Bi Y, Wu C. The Influence of Nonlinear Flow Resistance Relations on the Power and Efficiency From Fluid Flow[J]. Journal of Physics D:Applied Physics,1999, 32(12):1346
    [12] Luo Y, Liu X, Wang Z, et al. Optimization of the Runner for Extremely Low Head Bidirectional Tidal Bulb Turbine[J]. Energies, 2017, 10(6):787
    [13]陈婧.水力机械[M].北京:中国水利水电出版社,2015Chen Jing. Hydraulic Machinery[M]. Beijing:China Water&Power Press, 2015
    [14] Lonsdale H K, Merten U, Riley R L. Transport Properties of Cellulose Acetate Osmotic Membranes[J]. Journal of Applied Polymer Science, 1965, 9(4):1341-1362
    [15] Vince F, Marechal F, Aoustin E, et al. Multi-objective Optimization of RO Desalination Plants[J]. Desalination,2008, 222(1):96-118
    [16] Schock G, Miquel A. Mass Transfer and Pressure Loss in Spiral Wound Modules[J]. Desalination, 1987, 64:339-352
    [17] Sorin M, Jedrzejak S, Bouchard C. On Maximum Power of Reverse Osmosis Separation Processes[J]. Desalination,2006, 190(1):212-220
    [18]郑源,陈德新.水轮机[M].北京:中国水利水电出版社,2011Zheng Yuan, Chen Dexin. Hydraulic Turbine[M]. Beijing:China Water&Power Press, 2011
    [19] Hawlader M N A, Ho J C, Teng C K. Desalination of Seawater:an Experiment With RO Membranes[J]. Desalination, 2000, 132(1):275-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700