精炼工艺对铸造Al-2Li-2Cu-0.2Zr合金夹杂物和力学性能的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy
  • 作者:荣冕 ; 张亮 ; 吴国华 ; 李炜炜 ; 张小龙 ; 孙江伟 ; 丁文江
  • 英文作者:Mian RONG;Liang ZHANG;Guo-hua WU;Wei-wei LI;Xiao-long ZHANG;Jiang-wei SUN;Wen-jiang DING;National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University;Mag (Kunshan) New Material Technology Co., Ltd.;
  • 关键词:Al-Li-Cu-Zr合金 ; 精炼工艺 ; 显微组织 ; 熔体纯净度 ; 力学性能
  • 英文关键词:Al-Li-Cu-Zr alloy;;refining process;;microstructure;;melt purity;;mechanical properties
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:上海交通大学材料科学与工程学院轻合金精密成型国家工程研究中心金属基复合材料国家重点实验室;鼎镁(昆山)新材料科技有限公司;
  • 出版日期:2019-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(2016YFB0301003)supported by the National Key R&D Program of China;; Project(51871148)supported by the National Natural Science Foundation of China;; Project(sklmmc-kf18-02)supported by Open Research Fund of the State Key Laboratory of Metal Matrix Composites,China
  • 语种:英文;
  • 页:ZYSY201907003
  • 页数:8
  • CN:07
  • ISSN:43-1239/TG
  • 分类号:26-33
摘要
研究不同精炼工艺对铸造Al-2Li-2Cu-0.2Zr合金夹杂物和力学性能的影响,包括双级C_2Cl_6精炼工艺,双级氩气旋转喷吹精炼工艺和双级复合精炼工艺。结果表明,结合C_2Cl_6和氩气旋转喷吹的双级复合精炼工艺可以显著提高铸造Al-2Li-2Cu-0.2Zr合金的熔体纯净度和力学性能。与未精炼的合金相比,通过双级复合精炼工艺得到的合金气孔缺陷和夹杂物的体积分数从1.47%下降到0.12%,固溶处理后合金的屈服强度、抗拉强度和伸长率分别从113 MPa、179 MPa和3.9%提高至142 MPa、293 MPa和18.1%。合金熔炼过程中,在加入锂之前首先使用C_2Cl_6精炼进行除气以及除掉熔体中较大尺寸的夹杂物,在加入锂之后使用氩气旋转喷吹进一步除气以及除掉熔体中细小的悬浮夹杂物。双级复合精炼工艺不仅可以有效去除熔体中的气体和夹杂物,还可以大幅度降低锂元素的氧化烧损,结合两种精炼方法的各自优势,取得显著的精炼效果。
        The effect of different refining processes on inclusions and mechanical properties of cast Al-2 Li-2 Cu-0.2 Zr alloy was investigated, including two-stage hexachloroethane(C_2Cl_6) refining process, two-stage rotating gas bubbling refining process and two-stage composite refining process. It was found that the two-stage composite refining process, which combined C_2Cl_6 and rotating gas bubbling, can significantly improve the melt purity and mechanical properties of cast Al-2 Li-2 Cu-0.2 Zr alloy. Compared to the unrefined alloy, the volume fraction of gas porosity defects and slag inclusions decreased from 1.47% to 0.12%, and the yield strength, ultimate tensile strength and elongation of as-quenched alloy increased from 113 MPa,179 MPa and 3.9% to 142 MPa, 293 MPa and 18.1%, respectively. C_2Cl_6 was first utilized to degas and remove large size slag inclusions before lithium addition, and then the rotating gas bubbling was utilized to do the further degassing and remove the suspended fine inclusions after lithium addition. The two-stage composite refining process can take advantage of two methods and get the remarkable refining effect.
引文
[1] DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials&Design, 2014, 56:862-871.
    [2] G?SIOR W, D?BSKI A, TERLICKA S. Calorimetric and electromotive force measurements of Al-Li-Zn liquid solutions[J].Journal of Phase Equilibria&Diffusion, 2016, 15:1-10.
    [3] DENG Y L, YANG J L, SI-YU L I, ZHANG J, ZHANG X M.Influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24:1653-1658.
    [4] LI Hong-ying, SU Xiong-jie, YIN Hao, HUANG De-sheng.Microstructural evolution during homogenization of Al-Cu-LiMn-Zr-Ti alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(9):2543-2550.
    [5] LI Jin-feng, LIU Ping-li, CHEN Yong-lai, ZHANG Xu-hu, ZHENG Zi-qiao. Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys[J].Transactions of Nonferrous Metals Society of China, 2015, 25(7):2103-2112.
    [6] CHEN A, PENG Y, ZHANG L, WU G, LI Y. Microstructural evolution and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy during heat treatment[J]. Materials Characterization, 2016, 114:234-242.
    [7] ZOU C L, GENG G H, CHEN W Y. Development and application of aluminium-lithium alloy[J]. Applied Mechanics and Materials, 2014,599-601:12-17.
    [8] WESTBERG H B, SELD N A I, BELLANDER T. Emissions of some organochlorine compounds in experimental aluminum degassing with hexachloroethane[J]. Applied Occupational and Environmental Hygiene, 1997, 12:178-183.
    [9] WU R, QU Z K, SUN B, SHU D. Effects of spray degassing parameters on hydrogen content and properties of commercial purity aluminum[J]. Materials Science&Engineering A, 2007, 456:386-390.
    [10] ZHAO L, PAN Y, LIAO H, WANG Q. Degassing of aluminum alloys during re-melting[J]. Materials Letters, 2012, 66:328-331.
    [11] ESKIN G I. Cavitation mechanism of ultrasonic melt degassing[J].Ultrasonics Sonochemistry, 1995, 2(S):s137-s141.
    [12] PUGA H, BARBOSA J, GABRIEL J, SEABRA E, RIBEIRO S,PROKIC M. Evaluation of ultrasonic aluminium degassing by piezoelectric sensor[J]. Journal of Materials Processing Technology,2011, 211:1026-1033.
    [13] H?KAN B. WESTBERG, ANDERS I. SELDéN, BELLANDER T.Emissions of some organochlorine compounds in experimental aluminum degassing with hexachloroethane[J]. Applied Occupational&Environmental Hygiene, 1997, 12(3):178-183.
    [14] SUN Hui, MO Xiao-fei, ZHENG Rui-xiang. Numerical investigations of rotating spray degassing processing for aluminum melt[J]. Materials Science&Technology, 2010, 18:619-623.
    [15] LEROY C, PIGNAULT G. The use of rotating-impeller gas injection in aluminum processing[J]. Journal of Metals, 1991, 43:27-30.
    [16] ANZA I, MAKHLOUF M M. Synthesis of aluminum-titanium carbide micro and nanocomposites by the rotating impeller in-situ gas–liquid reaction method[J]. Metallurgical&Materials Transactions B, 2018, 49(1):466-480.
    [17] ZHANG X, ZHANG L, WU G, SHI C, ZHANG J. Influences of Mg content on the microstructures and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy[J]. Journal of Materials Science, 2019, 54:791-811.
    [18] ZHANG X, ZHANG L, WU G, LIU W, SHI C, TAO J, SUN J.Microstructural evolution and mechanical properties of cast Al-2Li-2Cu-0.5Mg-0.2Zr alloy during heat treatment[J]. Materials Characterization, 2017, 132:312-319.
    [19] SHI C, ZHANG L, WU G, ZHANG X, CHEN A, TAO J. Effects of Sc addition on the microstructure and mechanical properties of cast Al-3Li-1.5Cu-0.15Zr alloy[J]. Materials Science&Engineering A,2016.
    [20] PRASAD N E, GOKHALE A A, WANHILL R J H. Aluminumlithium alloys:Processing, properties, and applications[M].Butterworth-Heinemann, 2013.
    [21] ZHANG H, FAN J, ZHANG L, WU G, LIU W, CUI W, FENG S.Effect of heat treatment on microstructure, mechanical properties and fracture behaviors of sand-cast Mg-4Y-3Nd-1Gd-0.2Zn-0.5Zr alloy[J]. Materials Science&Engineering A, 2016, 677:411-420.
    [22] FENG S, LIU W, ZHAO J, WU G, ZHANG H, DING W. Effect of extrusion ratio on microstructure and mechanical properties of Mg-8Li-3Al-2Zn-0.5Y alloy with duplex structure[J]. Materials Science&Engineering A, 2017, 692:9-16.
    [23] WHITE M L, KUNTZ R R. The pyrolysis of hexachloroethane[J].International Journal of Chemical Kinetics, 1973, 5:295-299.
    [24] MEI Jun, LIU Wen-cai, WU Guo-hua, ZHANG Yang, ZHANG Yi-tao, HONG Yi-kai, ZHANG Ruo-xi, XIAO Lü, DING Wen-jiang.Effect of complex melt-refining treatment on microstructure and mechanical properties of sand-cast Mg-10Gd-3Y-0.5Zr alloy[J].Transactions of Nonferrous Metals Society of China, 2015, 25:1811-1821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700