用光镊技术研究硝酸铵气溶胶的挥发性(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on the Volatility of Ammonium Nitrate Using Optical Tweezers
  • 作者:吕席卷 ; 高晓艳 ; 马嘉璧 ; 张韫宏
  • 英文作者:Lü Xi-juan;GAO Xiao-yan;MA Jia-bi;ZHANG Yun-hong;Institute of Chemical Physics,School of Chemistry and Chemical Engineering,Beijing Institute of Technology;
  • 关键词:气溶胶 ; 光镊技术 ; 硝酸铵 ; 挥发性 ; 蒸发压力
  • 英文关键词:Aerosol;;Optical tweezers;;Ammonium nitrate;;Volatility;;Vapor pressures
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:北京理工大学化学与化工学院化学物理研究所;
  • 出版日期:2019-05-15
  • 出版单位:光谱学与光谱分析
  • 年:2019
  • 期:v.39
  • 基金:National Key R&D Program of China(2016YFC0203000);; Natural Science Foundation of China(91644101,91544223)
  • 语种:英文;
  • 页:GUAN201905057
  • 页数:5
  • CN:05
  • ISSN:11-2200/O4
  • 分类号:326-330
摘要
研究半挥发性气溶胶物质的气粒分配对于更准确地描述大气气溶胶的组成和尺寸分布是至关重要的。硝酸铵是亚微米颗粒物的主要组成部分,特别是在高污染事件中。为了更深入的了解硝酸铵气溶胶的气粒分配问题,利用激光悬浮技术捕获、悬浮半挥发性无机物硝酸铵液滴单颗粒(2~10μm),控制相对湿度条件、温度条件,并采集氢-氧振动带的受激拉曼峰位信息,利用非弹性米氏散射理论计算实时液滴半径尺寸、折射率和浓度,利用稳态传质模型Maxwell公式推算出了不同湿度下的蒸汽压。实验数据计算出的硝酸铵的饱和蒸汽压值的数量级与文献报道一致。当RH分别恒定在80%, 73%, 68%, 57.3%, 55.4%, 44.8%时,饱和蒸汽压值为(1.67±0.24)×10~(-3),(1.82±0.19)×10~(-3),(2.91±0.13)×10~(-3),(3.5±0.28)×10~(-3),(4.59±0.22)×10~(-3)和(6.64±0.3)×10~(-3) Pa,显然,随着相对湿度的降低,饱和蒸汽压值增大,即湿度降低促进硝酸铵的挥发。此外,还推算了不同湿度下硝酸铵气溶胶液滴的挥发通量,挥发通量值在(4.01±0.79)×10~(-7)~(3.32±0.77)×10~(-8) mol·(s·m~2)~(-1)之间。这对更好的了解气溶胶在挥发过程中的微观过程有重要意义。
        Measurements of the particle-to-gas partitioning of semi-volatile atmospheric aerosols are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. As a major component of semi-volatile aerosol species, ammonium nitrate(NH_4NO_3) is ubiquitous in the sub-micron particulate matter, particularly in high pollution episodes. In order to further understand gas-particle partitioning of NH_4NO_3, determination of the saturated vapor pressure of NH_4NO_3 is needed. Here, we investigate the volatility of NH_4NO_3 at different relative humidities(RHs) using aerosol optical tweezers coupled with Raman spectroscopy as an instrument for sampling and detecting. According to the Maxwell equation, the vapor pressures at different RHs are calculated, and the values are
引文
[1] Bouwman A F,Lee D S,Asman W A H,et al.Global Biogeochemical Cycles,1997,11(4):561.
    [2] Renard J J,Calidonna S E,Henley M V.Journal of Hazardous Materials B,2004,108(1-2):29.
    [3] James M,Lightstone T B O,Dan Imre.Journal of Physical Chemistry A,2000,104(41):9337.
    [4] Hu Dawei,Chen Jianmin,Ye Xingnan,et al.Atmospheric Environment,2011,45(14):2349.
    [5] Chien Wen-ming,Chandra Dhanesh,Lau K H,et al.The Journal of Chemical Thermodynamics,2010,42(7):846.
    [6] Hong J,?ij?l? Mikko,H?me S A K,et al.Atmospheric Chemistry and Physics,2017,17(6):4387.
    [7] Zardini A A,Krieger U K.Optics Express,2009,17(6):4659.
    [8] Cai C,Stewart D J,Reid J P,et al.Journal of Physical Chemistry A,2015,119(4):704.
    [9] Wang L N,Cai C,Zhang Y H.Journal of Physical Chemistry B,2017,121(36):8551.
    [10] Cai C,Tan S,Chen H,et al.Physical Chemistry Chemical Physics,2015,17(44):29753.
    [11] Preston T C,Reid J P.Journal of the Optical Society of America B,2013,30(8):2113.
    [12] Miles R E,Walker J S,Burnham D R,et al.Physical Chemistry Chemical Physics,2012,14(9):3037.
    [13] Marshall F H,Miles R E H,Song Y C,et al.Chemical Science,2016,7(2):1298.
    [14] Xue H,Moyle A M,Magee N,et al.Journal of the Atmospheric Sciences,2005,62(12):4310.
    [15] Massman W J.Atmospheric Environment,1998,32(6):1111.
    [16] Huffman J A,Docherty K S,Aiken A C,et al.Atmospheric Chemistry and Physics Discussions,2009,9(1):2645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700