基于界面相互干扰能分析法的二乙醇胺水溶液自发浸润聚偏氟乙烯疏水微孔膜的机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of the spontaneous invasion of aqueous diethanolamine solutions into polyvinylidene hydrophobic microporous membranes based on the analysis of interfacial interaction energy
  • 作者:徐晨汉 ; 丁忠伟 ; 刘丽英
  • 英文作者:XU ChenHan;DING ZhongWei;LIU LiYing;College of Chemical Engineering,Beijing University of Chemical Technology;
  • 关键词:膜润湿 ; 相互干扰能 ; 二乙醇胺 ; 聚偏氟乙烯
  • 英文关键词:membrane wetting;;interaction energy;;diethanolamine;;polyvinylidene
  • 中文刊名:BJHY
  • 英文刊名:Journal of Beijing University of Chemical Technology(Natural Science Edition)
  • 机构:北京化工大学化学工程学院;
  • 出版日期:2017-12-01 11:26
  • 出版单位:北京化工大学学报(自然科学版)
  • 年:2018
  • 期:v.45
  • 基金:国家自然科学基金(21576011)
  • 语种:中文;
  • 页:BJHY201801003
  • 页数:8
  • CN:01
  • ISSN:11-4755/TQ
  • 分类号:15-22
摘要
通过van Oss范德华表面张力拟合法,拟合出了聚偏氟乙烯(PVDF)疏水微孔膜和润湿PVDF膜的各界面张力,证实了表面活性剂的吸附入侵机理同样适用于二乙醇胺(DEA)溶液浸润PVDF膜。通过吸附实验和Hyper Chem软件的分子优化推算出了DEA分子在固液界面的相互干扰能,利用Hamaker算法计算了DEA分子与PVDF膜的相互干扰能。结合DEA分子的固液、固气相互干扰能和Starov界面吸附常数方程,定量计算出了DEA分子在PVDF膜上的固气界面吸附常数几乎为0,即DEA分子在自发浸润过程中吸附在固气表面的可能性极小,从而证实了DEA溶液缓慢浸润PVDF疏水微孔膜的机理是由于固液界面吸附导致固液界面张力下降而引起的液气界面附加压力反向。从相互干扰能的角度研究了润湿现象,并基于所得机理提出了抵抗润湿的方法。
        The van der Waals surface tension fitting method according to van Oss has been used to fit the interfacial tension of unwetted and wetted polyvinylidene( PVDF) membranes. It was confirmed that the adsorption-invasion mechanism of surfactants is also suitable for treatment of the process of wetting PVDF membranes with diethanolamin( DEA) solutions. The interaction energy of DEA molecules on the solid-liquid( S-L) interface was calculated using the results of adsorption experiments and molecular optimization with Hyper Chem. The interaction energy of the solid-gas( S-V) interface was calculated using the Hamaker constant algorithm. Based on the equation of Starov,the adsorption constant of DEA molecules on the S-V interface of the PVDF membrane was calculated to be almost zero,showing that the reason why the DEA solution just slowly wetted the PVDF hydrophobic microporous membrane was the additional pressure reversal,caused by the decrease on the S-L interface tension due to the adsorption of S-L interface. The wetting phenomenon was studied by the method of interfacial interaction energy,and an effective approach to prevent wetting has been proposed.
引文
[1]Mosadegh-Sedghi S,Rodrigue D,Brisson J,et al.Wetting phenomenon in membrane contactors—Causes and prevention[J].J Membrane Sci,2014,452:332-353.
    [2]Li J L,Chen B H.Review of CO2absorption using chemical solvents in hollow fiber membrane contactor[J].Sep Purif Technol,2005,41(2):109-122.
    [3]Cui L Y,Ding Z W,Liu L Y,et al.Modelling and experimental study of membrane wetting in microporous hollow fiber membrane contactors[J].Can J Chem Eng,2015,93(7):1254-1265.
    [4]Tantikhajorngosol P,Laosiripojana N,Jiraratananon R,et al.Analytical study of membrane wetting at high operating pressure for physical absorption of CO2using hollow fiber membrane contactors[J].Chem Eng Res Des,2017,126:265-277.
    [5]Fougerit V,Pozzobon V,Pareau D,et al.Gas-liquid absorption in industrial cross-flow membrane contactors:experimental and numerical investigation of the influence of transmembrane pressure on partial wetting[J].Chem Eng Sci,2017,170:561-573.
    [6]Khaisri S,de Montigny D,Tontiwachwuthikul P,et al.A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes[J].J Membrane Sci,2010,347:228-239.
    [7]Zhang H Y,Wang R,Liang D T,et al.Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2absorption[J].J Membrane Sci,2008,308:162-170.
    [8]Cui L Y,Ding Z W,Liu L Y,et al.Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecylbenzene sulphonate and diethanolamine aqueous solutions[J].Chem Pap,2016,70(3):305-314.
    [9]Starov V,Ivanova N,Rubio R G.Why do aqueous surfactant solutions spread over hydrophobic substrates?[J].Adv Colloid Interface Sci,2010,161(1/2):153-162.
    [10]van Oss C J.Hydrophobicity of biosurfacesss—origin,quantitative determination and interaction energies[J].Colloids and Surfaces B:Biointerfaces,1995,5(3/4):91-110.
    [11]Somasundaran P,Huang L.Adsorption/aggregation of surfactants and their mixtures at solid liquid interfaces[J].Adv Colloid Interface Sci,2000,88(1/2):179-208.
    [12]Maurer S,Mersmann A,Peukert W.Henry coefficients of adsorption predicted from solid Hamaker constants[J].Chem Eng Sci,2001,56(11):3443-3453.
    [13]Morra M,Occhiello E,Garbassi F.Effect of surface treatment on the Hamaker constant of intermediate modulus carbon fibers[J].Colloid Polym Sci,1992,270(1):58-63.
    [14]Starov V M.Spontaneous rise of surfactant solutions into vertical hydrophobic capillaries[J].J Colloid Interface Sci,2004,270(1):180-186.
    [15]Kudchadker A P,Alani G H,Zwolinski B J.The critical constants of organic substances[J].Chem Rev,1968,68(6):659-735.
    [16]Mumford S A,Phillips J W C.CCLXXIV.—The evaluation and interpretation of parachors[J].J Chem Soc,1929:2112-2133.
    [17]Vazquez G,Alvarez E,Rendo R,et al.Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 to 50℃[J].J Chem Eng Data,1996,41(4):806-808.
    [18]Starov V M.Surfactant solutions and porous substrates:spreading and imbibition[J].Adv Colloid Interface Sci,2004,111(1/2):3-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700