高寒草甸草原净初级生产力对气候变化响应的模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of aboveground net primary productivity of the alpine meadow steppe to climate change:simulations based on the CENTURY model
  • 作者:耿元波 ; 王松 ; 胡雪荻
  • 英文作者:GENG Yuan-bo;WANG Song;HU Xue-di;Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:气候变化 ; 草地生态系统 ; CENTURY模型 ; 地上净初级生产力
  • 英文关键词:climate change;;grassland ecosystem;;CENTURY model;;aboveground net primary productivity
  • 中文刊名:CYXB
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:中国科学院地理科学与资源研究所;中国科学院大学;
  • 出版日期:2018-01-20
  • 出版单位:草业学报
  • 年:2018
  • 期:v.27;No.150
  • 基金:国家自然科学基金项目(41071138)资助
  • 语种:中文;
  • 页:CYXB201801001
  • 页数:13
  • CN:01
  • ISSN:62-1105/S
  • 分类号:4-16
摘要
利用1957-2014年气象数据和1998-2014年实测数据驱动CENTURY模型模拟海北高寒草甸草原生态系统地上净初级生产力(ANPP)的动态变化,并利用典型浓度路径RCP4.5和RCP8.5情景下5个大气环流模型的气候情景数据来模拟未来气候变化和CO2浓度变化对草地生态系统ANPP的影响。结果表明:1)研究地点1998-2014年的ANPP观测值与模拟值变化趋势吻合度较高,Pearson相关性系数为0.67,均方根误差为19.62g·m-2,CENTURY模型适用于模拟气候变化对高寒草甸草原影响的研究。2)过去50多年,高寒草甸草原的年平均最低气温、最高气温和年平均气温都呈极显著的波动上升趋势(P<0.01),年降水量年际波动特征比较明显,降水主要集中在植被的生长季。过去50多年,高寒草甸草原ANPP平均值达到271g·m-2,总体变化趋势为增加,但变化趋势不显著(P>0.05)。3)与基准时段(2001-2014年)相比,高寒草甸草原未来2030s(2015-2040年)、2050s(2041-2070年)、2080s(2071-2099年)时段多模型年平均降水量、年平均温度、年平均最低和最高温度变化率均为正值。不考虑CO2肥效作用下,高寒草甸草原多模型平均ANPP在RCP4.5和RCP8.5情景下分别增加2.21%,11.53%,17.78%和8.34%,21.68%,40.32%;考虑CO2肥效作用下,高寒草甸草原多模型平均ANPP在RCP4.5和RCP8.5情景下分别增加2.89%,14.29%,24.28%和11.57%,31.74%,57.29%。考虑和不考虑CO2肥效的情况下,5个大气环流模型引起的模拟结果的不确定性都在合理范围之内,多大气环流模型与CENTURY耦合模拟的ANPP结果较为一致。
        The CENTURY model was used to simulate the dynamic changes in aboveground net primary productivity(ANPP)in the Haibei alpine meadow steppe,based on meteorological data from 1957 to 2014 and measured data from 1998 to 2014.The CENTURY model was coupled with five general circulation models(GCMs)to simulate the impacts of changes in climate and CO2 concentration on the ANPP in three future periods in the RCP(the latest Representative Concentration Pathways)4.5 and 8.5 scenarios.The results showed that:1)The trends in the measured values and the simulated values of ANPP at the research site from 1998 to2014 were highly consistent(Pearson's correlation coefficient,0.67;root mean square error,19.62 g·m-2),indicating that the CENTURY model is applicable to the alpine meadow steppe in Haibei.2)Over the past 50 years,the annual mean minimum temperature,annual mean maximum temperature,and annual mean temperature have significantly increased(P<0.01)in the alpine meadow steppe,and there have been marked fluctuations in annual mean precipitation,with precipitation mainly concentrated in the vegetation growing season.The average value of ANPP in the alpine meadow steppe is 271 g·m-2.The average ANPP has shown an overall increasing trend,but the trend was not significant(P>0.05).3)There is a positive rate of change in the ensemble average of annual mean minimum temperature,annual mean maximum temperature,annual mean temperature,and annual mean precipitation during the three future periods:the 2030 s(2016-2040),the2050 s(2041-2070),and the 2080 s(2071-2099)at RCP4.5 and RCP8.5,relative to the baseline period(2001-2014).If CO2 fertilization effects are excluded,the ensemble average ANPP of the alpine meadow steppe is predicted to increase by 2.21%,11.53%,and 17.78% at RCP4.5,and by 8.34%,21.68%,and 40.32% at RCP8.5,during the three future periods(2030 s,2050 s,and 2080 s,respectively),compared with the baseline period(2001-2014).If CO2 fertilization effects are included,the ensemble average ANPP of alpine meadowsteppe is predicted to increase by 2.89%,14.29%,and 24.28% at RCP4.5,and by 11.57%,31.74%,and 57.29% at RCP8.5 during the three future periods(2030 s,2050 s,and 2080 s,respectively).The simulated ANPP results from five GCMs showed good consistency,and the uncertainty caused by combining climate models with the CENTURY model was in a reasonable range.
引文
[1]Intergovernment Panel on Climate Change.Climate Change 2013:The Physical Science Basis.Cambridge:Cambridge University Press,2013.
    [2]Gang C,Zhou W,Wang Z,et al.Comparative assessment of grassland NPP dynamics in response to climate change in China,North America,Europe and Australia from 1981to 2010.Journal of Agronomy&Crop Science,2014,201(1):57-68.
    [3]Gao Q,Zhu W,Schwartz M W,et al.Climatic change controls productivity variation in global grasslands.Scientific Reports,2016,6:26958.
    [4]Wu S H,Yin Y H,Zheng D,et al.Climate changes in the Tibetan Plateau during the last three decades.Acta Geographica Sinica,2005,60(1):3-11.吴绍洪,尹云鹤,郑度,等.青藏高原近30年气候变化趋势.地理学报,2005,60(1):3-11.
    [5]Li Y N,Zhao X Q,Cao G M,et al.Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station.Plateau Meteorology,2004,23(4):558-567.李英年,赵新全,曹广民,等.海北高寒草甸生态系统定位站气候、植被生产力背景的分析.高原气象,2004,23(4):558-567.
    [6]Parton W J,Stewart J W B,Cole C V.Dynamics of C,N,P and S in grassland soils:a model.Biogeochemistry,1988,5(1):109-131.
    [7]Bandaranayake W,Qian Y L,Parton W J,et al.Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model.Agronomy Journal,2003,95(3):558-563.
    [8]Cong R,Wang X,Xu M,et al.Evaluation of the CENTURY model using long-term fertilization trials under corn-wheat cropping systems in the typical croplands of China.Plos One,2014,9(4):e95142.
    [9]Xiao X,Chen D,Peng Y,et al.Observation and modeling of plant biomass of meadow steppe in Tumugi,Xingan League,Inner Mongolia,China.Vegetatio,1996,127(2):191-201.
    [10]Zhang C H,Wang M J,Zhang L,et al.Response of meadow steppe ANPP to climate change in Hulunbeir,Inner Mongolia-a simulation study.Acta Prataculturae Sinica,2013,22(3):41-50.张存厚,王明玖,张立,等.呼伦贝尔草甸草原地上净初级生产力对气候变化响应的模拟.草业学报,2013,22(3):41-50.
    [11]Xiao X M,Wang Y F,Chen Z Z.Dynamics of primary productivity and soil organic matter of typical steppe in the Xilin river basin of Inner Mongolia and their response to climate change.Chinese Bulletin of Botany,1996,38(1):45-52.肖向明,王义凤,陈佐忠.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应.植物学报,1996,38(1):45-52.
    [12]Yuan F,Han X G,Ge J P,et al.Net primary productivity of Leymus chinensis steppe in Xilin River basin of Inner Mongolia and its responses to global climate change.Chinese Journal of Applied Ecology,2008,19(10):2168-2176.袁飞,韩兴国,葛剑平,等.内蒙古锡林河流域羊草草原净初级生产力及其对全球气候变化的响应.应用生态学报,2008,19(10):2168-2176.
    [13]Mo Z H,Li Y E,Gao Q Z.Simulation on productivity of main grassland ecosystems responding to climate change.Chinese Journal of Agrometeorology,2012,23(4):545-554.莫志鸿,李玉娥,高清竹.主要草原生态系统生产力对气候变化响应的模拟.中国农业气象,2012,23(4):545-554.
    [14]Moss R H,Edmonds J A,Hibbard K A,et al.The next generation of scenarios for climate change research and assessment.Nature,2010,463(7282):747-756.
    [15]Li Y M,Wu W X,Ge Q S,et al.Simulating climate change impacts and adaptive measures for rice cultivation in Hunan Province,China.Journal of Applied Meteorology&Climatology,2016,55(6):160205104123009.
    [16]Pu J Y,Li Y N,Zhao L,et al.The relationship between seasonal changes of Kobresia humilis meadow biomass and the meteorological factors.Act Agrestia Sinica,2005,13(3):238-241.蒲继延,李英年,赵亮,等.矮嵩草草甸生物量季节动态及其与气候因子的关系.草地学报,2005,13(3):238-241.
    [17]Sun J W,Li Y N,Song C G,et al.Seasonal dynamics model of aboveground biomass and leaf area index on alpine Kobresia humilis meadow in Qinghai-Tibet Plateau.Chinese Journal of Agrometeorology,2010,31(2):230-234.孙建文,李英年,宋成刚,等.高寒矮嵩草草甸地上生物量和叶面积指数的季节动态模拟.中国农业气象,2010,31(2):230-234.
    [18]Li D.Modelling Dynamics of Soil Organic Carbon in Alpine Meadow by Using Century Model.Nanjing:Nanjing Agricultural University,2011.李东.基于CENTURY模型的高寒草甸土壤有机碳动态模拟研究.南京:南京农业大学,2011.
    [19]Li D,Luo X P,Cao G M,et al.Simulating of the response of soil heterotrophic respiration to climate change and nitrogen deposition in alpine meadows.Acta Prataculturae Sinica,2015,24(7):1-11.李东,罗旭鹏,曹广民,等.高寒草甸土壤异养呼吸对气候变化和氮沉降响应的模拟.草业学报,2015,24(7):1-11.
    [20]Warszawski L,Frieler K,Huber V,et al.The inter-sectoral impact model intercomparison project(ISI-MIP):project framework.Proceedings of the National Academy of Sciences,2014,111(9):3228-3232.
    [21]Leng G,Tang Q.Modeling the impacts of future climate change on irrigation over China:sensitivity to adjusted projections.Journal of Hydrometeorology,2014,15(15):2085-2103.
    [22]Hempel S,Frieler K,Warszawski L,et al.A trend-preserving bias correction-the ISI-MIP approach.Earth System Dynamics,2013,4(2):219-236.
    [23]Parton W J,Scurloc J M O,Ojima D S,et al.Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide.Global Biogeochemical Cycles,1993,7(4):785-809.
    [24]Wang S,Geng Y B,Mu Y.Responses of the aboveground net primary productivity of typical steppe to climate change-a simulation based on CENTURY Model.Acta Prataculturae Sinica,2016,25(12):4-13.王松,耿元波,母悦.典型草原净初级生产力对气候变化响应的模拟.草业学报,2016,25(12):4-13.
    [25]Zhou T,Shi P,Wang S.Impacts of climate change and human activities on soil carbon storage in China.Acta Geographica Sinica,2003,58(5):727-734.
    [26]Ma W H,Fang J Y,Yang Y H,et al.Biomass carbon stocks and their changes in northern China’s grasslands during1982-2006.Scientia Sinica Vitae,2010,40(7):632-641.马文红,方精云,杨元合,等.中国北方草地生物量动态及其与气候因子的关系.中国科学:生命科学,2010,40(7):632-641.
    [27]Liu Y Y,Li Z L,Han J Y,et al.Influences of precipitation regimes and elevated CO2on photosynthesis and biomass accumulation in Leymus chinensis.Acta Prataculturae Sinica,2015,24(11):128-136.刘玉英,李卓琳,韩佳育,等.模拟降雨量变化与CO2浓度升高对羊草光合特性和生物量的影响.草业学报,2015,24(11):128-136.
    [28]Kirtman B P,Min D,Infanti J M,et al.The North American Multimodel ensemble:Phase-1Seasonal-to-interannual prediction,Phase-2toward developing intraseasonal prediction.Bulletin of the American Meteorological Society,2014,95(2):585
    [29]Lobell D B,Bonfils C,Duffy P B.Climate change uncertainty for daily minimum and maximum temperatures:A model intercomparison.Geophysical Research Letters,2007,34(5):114-127.
    [30]Zhang C H,Wang M J,Wulanbater,et al.Responses of ANPP to climate change in Inner Mongolia typical steppe-a simulation study.Acta Botanica Boreali-Occidentalia Sinica,2012,32(6):1229-1237.张存厚,王明玖,乌兰巴特尔,等.内蒙古典型草原地上净初级生产力对气候变化响应的模拟.西北植物学报,2012,32(6):1229-1237.
    [31]Li Y N,Zhao L,Zhao X Q,et al.Effects of a 5-years mimic temperature increase to the structure and productivity of Kobresia humilis meadow.Acta Agrestia Sinica,2004,12(3):236-239.李英年,赵亮,赵新全,等.5年模拟增温后矮嵩草草甸群落结构及生产量的变化.草地学报,2004,12(3):236-239.
    [32]Ottman M J,Kimball B A,Pinter P J,et al.Elevated CO2increases sorghum biomass under drought conditions.New Phytologist,2001,150(2):261-273.
    [33]Kimball B A,Kobayashi K,Bindi M.Responses of agricultural crops to free-air CO2enrichment.Chinese Journal of Applied Ecology,2002,13(10):1323-1338.
    [34]Zhou H K,Zhou L,Zhao X Q,et al.Stability of alpine meadow ecosystem on Qinghai-Tibetan Plateau.Chinese Science Bulletin,2006,51(1):63-69.周华坤,周立,赵新全,等.青藏高原高寒草甸生态系统稳定性研究.科学通报,2006,51(1):63-69.
    [35]Zhou H K,Zhao X Q,Zhao L,et al.Restoration capability of alpine meadow ecosystem on Qinghai-Tibetan Plateau.Chinese Journal of Ecology,2008,27(5):697-704.周华坤,赵新全,赵亮,等.青藏高原高寒草甸生态系统的恢复能力.生态学杂志,2008,27(5):697-704.
    [36]Fu G,Zhou Y T,Shen Z X,et al.Relationships between aboveground biomass and climate factors on alpine meadow in Northern Tibet.Chinese Journal of Grassland,2011,33(4):31-36.付刚,周宇庭,沈振西,等.藏北高原高寒草甸地上生物量与气候因子的关系.中国草地学报,2011,33(4):31-36.
    [37]LüX M,Zheng D.Impacts of global change on the alpine meadow ecosystem in the source region of the Yangtze river.Resources and Environment in the Yangte Basin,2006,15(5):603-607.吕新苗,郑度.气候变化对长江源地区高寒草甸生态系统的影响.长江流域资源与环境,2006,15(5):603-607.
    [38]Hallegatte S.Strategies to adapt to an uncertain climate change.Global Environmental Change,2009,19(2):240-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700