Ceria on alumina support for catalytic pyrolysis of Pavlova sp. microalgae to high-quality bio-oils
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ceria on alumina support for catalytic pyrolysis of Pavlova sp. microalgae to high-quality bio-oils
  • 作者:Tevfik ; Aysu ; Javier ; Fermoso ; Aimaro ; Sanna
  • 英文作者:Tevfik Aysu;Javier Fermoso;Aimaro Sanna;Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University;Department of Chemistry, Faculty of Education, Yuzuncu Yil University;
  • 英文关键词:Bio-oil;;Pavlova sp.;;Pyrolysis;;Deoxygenation;;Catalyst;;Ceria
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University;Department of Chemistry, Faculty of Education, Yuzuncu Yil University;
  • 出版日期:2018-05-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2018
  • 期:v.27
  • 基金:the EPSRC (Grant no. EP/P018955/1) for support;; the financial support provided by the post-doctoral research fellowship programme (2219),Scientific and Technological Research Council of Turkey (TUBITAK)
  • 语种:英文;
  • 页:TRQZ201803029
  • 页数:9
  • CN:03
  • ISSN:10-1287/O6
  • 分类号:278-286
摘要
In this work,we report for the first time the in-situ catalytic pyrolysis of Pavlova sp.microalgae,which has been performed in a fixed-bed reactor in presence of Ce/Al_2O_3-based catalysts.The effects of pyrolysis parameters,such as temperature and catalyst were studied on the products yield distribution and biooil composition,among others.Results showed that all catalysts increased the bio-oil yield with respect to the non-catalytic runs and reduced the O/C ratio from 0.69(Pavlova sp.)to 0.1–0.15,which is close to that of crude oil.In terms of bio-oil oxygen content,Mg Ce/Al_2O_3presented the best performance with a reduction of more than 30%,from 14.1 to 9.8 wt%,of the oxygen concentration in comparison with thermal pyrolysis.However,Ni Ce/Al_2O_3gave rise to the highest aliphatics/aromatics fractions.The elemental and gas analysis indicates that N was partially removed from the catalytic bio-oils in the gas phase in forms of NH_3and HCN.
        In this work,we report for the first time the in-situ catalytic pyrolysis of Pavlova sp.microalgae,which has been performed in a fixed-bed reactor in presence of Ce/Al_2O_3-based catalysts.The effects of pyrolysis parameters,such as temperature and catalyst were studied on the products yield distribution and biooil composition,among others.Results showed that all catalysts increased the bio-oil yield with respect to the non-catalytic runs and reduced the O/C ratio from 0.69(Pavlova sp.)to 0.1–0.15,which is close to that of crude oil.In terms of bio-oil oxygen content,Mg Ce/Al_2O_3presented the best performance with a reduction of more than 30%,from 14.1 to 9.8 wt%,of the oxygen concentration in comparison with thermal pyrolysis.However,Ni Ce/Al_2O_3gave rise to the highest aliphatics/aromatics fractions.The elemental and gas analysis indicates that N was partially removed from the catalytic bio-oils in the gas phase in forms of NH_3and HCN.
引文
[1]K.W.Chew,J.Y.Yap,P.L.Show,N.H.Suan,J.C.Juan,T.C.Ling,D.-J.Lee,J.-S.Chang,Bioresour.Technol.229(2017)53–62.
    [2]D.K.Y.Lim,S.Garg,M.Timmins,E.S.B.Zhang,S.R.Thomas-Hall,H.Schuhmann,Y.Li,P.M.Schenk,PLo S One 7(2012)1–13.
    [3]F.Ahmed,W.Zhou,P.M.Schenk,Algal Res.10(2015)210–217.
    [4]M.Hannon,J.Gimpel,M.Tran,B.Rasala,S.Mayfield,Biofuels 1(2010)763–784.
    [5]K.K.Sharma,H.Schuhmann,P.M.Schenk,Energies 5(2012)1532–1553.
    [6]M.St?cker,Angew.Chem.Int.Ed.47(2008)9200–9211.
    [7]C.Liu,H.Wang,A.M.Karim,J.Sun,Y.Wang,Chem.Soc.Rev.43(2014)7594–7623.
    [8]J.Fermoso,P.Pizarro,J.M.Coronado,D.P.Serrano,WIREs Energy Environ.6(4)(2017)1–18.
    [9]H.Hernando,J.Fermoso,I.Moreno,J.M.Coronado,D.P.Serrano,P.Pizarro,Biomass Convers.Biorefinery(2017),doi:10.1007/s13399-017-0262-x.
    [10]H.Hernando,S.Jiménez-Sánchez,J.Fermoso,P.Pizarro,J.M.Coronado,D.P.Serrano,Catal.Sci.Technol.6(2016)2829–2843.
    [11]Y.Zhang,P.Chen,H.Lou,J.Energy Chem.25(2016)427–433.
    [12]G.W.Huber,S.Iborra,A.Corma,Chem.Rev.106(2006)4044–4098.
    [13]C.Lorenzetti,R.Conti,D.Fabbri,J.Yanik,Fuel 166(2016)446–452.
    [14]A.Galadima,O.Muraza,Energy Convers.Manag.105(2015)338–354.
    [15]Z.Du,X.Ma,Y.Li,P.Chen,Y.Liu,X.Lin,H.Lei,R.Ruan,Bioresour.Technol.139(2013)397–401.
    [16]G.Kabir,B.H.Hameed,Renew.Sustain.Energy Rev.70(2017)945–967.
    [17]H.Hernando,I.Moreno,J.Fermoso,C.Ochoa-Hernández,P.Pizarro,J.M.Coronado,J.ˇCejka,D.P.Serrano,Biomass Convers.Biorefinery(2017),doi:10.1007/s13399-017-0266-6.
    [18]C.Mukarakate,M.J.Watson,J.ten Dam,X.Baucherel,S.Budhi,M.M.Yung,H.Ben,K.Iisa,R.M.Baldwin,M.R.Nimlos,Green Chem.16(2014)4891–4905.
    [19]H.Cerqueira,P.Ayrault,J.Datka,M.Guisnet,Micropor.Mesopor.Mater.38(2000)197–205.
    [20]A.Aho,N.Kumar,K.Er?nen,T.Salmi,M.Hupa,D.Y.Murzin,Fuel 87(2008)2493–2501.
    [21]D.J.Mihalcik,C.A.Mullen,A.A.Boateng,J.Anal.Appl.Pyrolysis 92(2011)224–232.
    [22]J.Fermoso,H.Hernando,P.Jana,I.Moreno,J.Prech,C.Ochoa-hernández,P.Pizarro,J.M.Coronado,J.Cejka,D.P.Serrano,Catal.Today 277(2016)171–181.
    [23]O.D.Mante,J.A.Rodriguez,S.D.Senanayake,S.P.Babu,Green Chem.17(2015)2362–2368.
    [24]T.Aysu,M.M.Maroto-Valer,A.Sanna,Bioresour.Technol.208(2016)140–148.
    [25]T.Aysu,N.A.Abd Rahman,A.Sanna,Energy 103(2016)205–214.
    [26]T.Aysu,A.Sanna,Bioresour.Technol.194(2015)108–116.
    [27]R.Shakya,J.Whelen,S.Adhikari,R.Mahadevan,S.Neupane,Algal Res.12(2015)80–90.
    [28]X.Ying,W.Tiejun,M.Longlong,C.Guanyi,Energy Convers.Manag.55(2012)172–177.
    [29]S.A.Channiwala,P.P.Parikh,Fuel 81(2002)1051–1063.
    [30]S.S.Kim,H.V.Ly,J.Kim,E.Y.Lee,H.C.Woo,Chem.Eng.J.263(2015)194–199.
    [31]T.M.Brown,P.Duan,P.E.Savage,Energy Fuels 24(2010)3639–3646.
    [32]D.López-González,M.Fernandez-Lopez,J.L.Valverde,L.Sanchez-Silva,Energy73(2014)33–43.
    [33]P.Biller,A.B.Ross,Bioresour.Technol.102(2011)215–225.
    [34]W.-H.Chen,B.-J.Lin,M.-Y.Huang,J.-S.Chang,Bioresour.Technol.184(2015)314–327.
    [35]I.V.Babich,M.van der Hulst,L.Lefferts,J.A.Moulijn,P.O’Connor,K.Seshan,Biomass Bioenergy 35(2011)3199–3207.
    [36]A.Campanella,M.P.Harold,Biomass Bioenergy 46(2012)218–232.
    [37]H.Qiao,Z.Wei,H.Yang,L.Zhu,X.Yan,J.Nanomater.2009(2009)1–5.
    [38]J.M.Hernández-Enríquez,R.Silva-Rodrigo,R.García-Alamilla,L.Arcelia García-Serrano,B.E.Handy,G.Cárdenas-Galindo,A.Cueto-Hernández,Chem.Soc56(2012)115–120.
    [39]W.Dong,Z.Shen,B.Peng,M.Gu,X.Zhou,B.Xiang,Y.Zhang,Sci.Rep.6(2016)26713.
    [40]J.Fermoso,J.M.Coronado,D.P.Serrano,P.Pizarro,Microalgae-Based Biofuels and Bioproducts:From Feedstock Cultivation to End-products,Elsevier Ltd.,2017,pp.259–282.
    [41]F.C.Borges,Q.Xie,M.Min,L.A.R.Muniz,M.Farenzena,J.O.Trierweiler,P.Chen,R.Ruan,Bioresour.Technol.166(2014)518–526.
    [42]J.Joyce,Conditioning Biochars for Application to Soils,Technical Note,2010 http://www.terra-char.com/uploads/2/3/7/9/23790961/composting_with_biochar.pdf.
    [43]Y.Yang,J.G.Brammer,A.S.N.Mahmood,A.Hornung,Bioresour.Technol.169(2014)794–799.
    [44]K.Wang,Pyrolysis and Catalytic Pyrolysis of Protein-and Lipid-Rich Feedstock,Iowa State University Ames,2014.
    [45]G.Kumar,S.Shobana,W.-H.Chen,Q.-V.Bach,S.-H.Kim,A.E.Atabani,J.-S.Chang,Green Chem.19(2017)44–67.
    [46]P.A.Horne,P.T.Williams,Fuel 75(1996)1051–1059.
    [47]Z.Du,Thermochemical Conversion of Microalgae for Biofuel Production,University of Minnesota,2013.
    [48]S.Leng,X.Wang,Q.Cai,F.Ma,Y.Liu,J.Wang,Bioresour.Technol.149(2013)341–345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700