HFO-1234ze(Z)热解机理的DFT研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of Thermal Decomposition of HFO-1234ze(Z) by DFT Study
  • 作者:张浩 ; 刘朝 ; 吴小阳 ; 曹宇 ; 徐肖肖
  • 英文作者:ZHANG Hao;LIU Chao;WU Xiao-Yang;CAO Yu;XU Xiao-Xiao;Key Laboratory of Low-grade Energy Utilization Technology & System, Ministry of Education, College of Power Engineer, Chongqing University;Chongqing Special Equipment Inspection and Research Institute;
  • 关键词:HFO-1234ze ; 热解 ; 密度泛函理论(DFT)
  • 英文关键词:HFO-1234ze;;thermal decomposition;;density function theory(DFT)
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:低品位能源利用技术及系统教育部重点实验室重庆大学动力工程学院;重庆市特种设备检测研究院;
  • 出版日期:2017-09-15
  • 出版单位:工程热物理学报
  • 年:2017
  • 期:v.38
  • 基金:国家自然科学基金资助项目(No.51576019);; 重庆市研究生科研创新项目资助(No.CYB17013)
  • 语种:中文;
  • 页:GCRB201709003
  • 页数:5
  • CN:09
  • ISSN:11-2091/O4
  • 分类号:16-20
摘要
通过密度泛函理论(DFT)对1,1,1,3-四氟丙烯(HFO-1234ze(Z),CF_3CH=CHF)的热解反应路径进行研究,对可能得热解产物(CF_3H,CF_4,HF)进行了分析。结果表明:在均裂反应中,CF_3自由基最易生成,其活化能为210.25 kJ mol~(-1)。相比之下,由于较高的活化能,F自由基最难产生。在随后的链式反应中,生成CF_3H所需的活化能最低为64.23kJ mol~(-1)。而生成CF_4和HF所需的活化能较高。本文从分子尺度研究了HFO-1234ze的热解机理并为研究有机工质的热稳定性提供了参考。
        The reaction pathways of thermal decomposition of 1,1,1,3-tetrafluoro-1-propene(HFO-1234ze(Z), CF_3CH=CHF)were presented to investigate the formation mechanism of some possible products(CF_3H, CF_4, HF) by using density function theory(DFT) simulations. The results point out that CF_3 is the most preferred product in homolytic cleavage reaction with the lowest energy barrier of 210.25 kJ/mol. F radical is hard to be generated during thermal decomposition processes because of its higher energy barrier. In subsequent radical attacking chain reactions, a lower energy barrier(64.23 kJ/mol) is required to form CF_3H. CF_4 and HF will be generated with higher energy barriers.Our work presents the mechanism of thermal decomposition of HFO-1234 ze from a molecule level and provides a reference for studying the thermal stability of organic working fluids.
引文
[1]Tanaka K,Higashi Y,Thermodynamic Properties of HFO-1234yf(2,3,3,3-tetrafluoropropene)[J].International Journal of Refrigeration,2010,33(3):474-479
    [2]Yamada N,Mohamad M N A,and Kien T T,Study on Thermal Efficiency of Low-to Medium-temperature Organic Rankine Cycles Using HFO-1234yf[J].Renewable Energy,2012,41:368-375
    [3]HU Peng,CHEN Longxiang,ZHU Wanbao,et al.Isothermal VLE Measurements for the Binary Mixture of 2,3,3,3-tetrafluoroprop-l-ene(HFO-1234yf)+1,1-difluoroethane(HFC-152a)[J].Fluid Phase Equilibria,2014.373:80-83
    [4]HU Peng,CHEN Longxiang,CHEN Zeshao.VaporLiquid Equilibria for Binary System of 2,3,3,3-tetrafluoroprop-l-ene(HFO-1234y f)+isobutane(HC-600a)[J].Fluid Phase Equilibria,2014.365:1-4
    [5]Kamiaka T,Dang C,and Hihara E.Vapor-Liquid Equilibrium Measurements for Binary Mixtures of R1234jyf with R32,R125,and R134a[J].International Journal of Refrigeration,2013.36(3):965-971
    [6]DAI Xiaoye,SHI Lin,AN Qingsong,et al.Chemical Kinetics Method for Evaluating the Thermal Stability of Organic Rankine Cycle Working Fluids.[J]Applied Thermal Engineering,2016,100:708-713
    [7]Angelino G and Invernizzi C.Experimental Investigation on the Thermal Stability of Some New Zero ODP Refrigerants[J].International Journal of Refrigeration,2003.26(1):51-58
    [8]Mishra B K,Chakrabartty A K,Deka R C.Theoretical Investigation of the Gas-phase Reactions of CF_2CIC(O)OCH3 with the Hydroxyl Radical and the Chlorine Atom at 298 K[J].Journal of Molecular Modeling,2013,19(8):3263-3270
    [9]Mishra B K,Lily M,Chakrabartty A K,et al.Theoretical Investigation of Atmospheric Chemistry of Volatile Anaesthetic Sevoflurane:Reactions with the OH Radicals and Atmospheric Fate of the Alkoxy Radical(CF_)_2CHOCHFO:Thermal Decomposition vs.Oxidation[J].New Journal of Chemistry,2014,38(7):2813-2822
    [10]Lily M,Mishra B K,Chandra A K.Kinetics,Mechanism and Thermochemistry of the Gas Phase Reactions of CF3CH_2OCH_2 CF3 with OH Radicals:a Theoretical Study[J].Journal of Fluorine Chemistry,2014,161:51-59
    [11]Gour N K,Deka R C,Singh H J,et al.Theoretical Study on the Gas-phase Reactions of Ethyl Butyrate With OH Radicals at 298 K[J].Monatshefte fur Chemie-Chemical Monthly,2014,145(11):1759-1767
    [12]LIU Chao,ZHANG Yayun,HUANG Xiaolu.Study of Guaiacol Pyrolysis Mechanism Based on Density Function Theory[J].Fuel Processing Technology,2014,123:159-165
    [13]DU Benni,FENG Changjun,ZHANG Weichao.Theoretical Studies on the Reaction Mechanisms and Rate Constants for OH Radicals With CF3CFCH2[J].Chemical Physics Letters,2009,479(1):37-42
    [14]QU Yena,SU Kehe,WANG Xin,et al.Reaction Pathways of Propene Pyrolysis[J].Journal of Computational Chemistry,2010,31(7):1421-1442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700