稀释释时间对铯基卤化铅钙钛矿纳米晶母液性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Dilution Time for Mother Solution on the Properties of Cesium Lead Iodide Perovskite Nanocrystals
  • 作者:李丹 ; 吴益华 ; 谌长松 ; 朱志刚 ; 施惟恒
  • 英文作者:LI Dan;WU Yihua;CHEN Changsong;ZHU Zhigang;SHI Weiheng;School of Environmental and Materials Engineering, Shanghai Polytechnic University;Department of Materials Science and Engineering, Drexel University;
  • 关键词:铯基碘化铅 ; 稀释时间 ; 稳定性
  • 英文关键词:cesium lead iodide;;dilution time;;stability
  • 中文刊名:SHDR
  • 英文刊名:Journal of Shanghai Polytechnic University
  • 机构:上海第二工业大学环境与材料工程学院;德雷克塞尔大学材料科学与工程系;
  • 出版日期:2019-06-15
  • 出版单位:上海第二工业大学学报
  • 年:2019
  • 期:v.36;No.101
  • 基金:上海第二工业大学研究生项目基金(EGD17YG003)资助
  • 语种:中文;
  • 页:SHDR201902007
  • 页数:7
  • CN:02
  • ISSN:31-1496/T
  • 分类号:31-37
摘要
铯基卤化铅(CsPbI_3)钙钛矿纳米晶具有高光致发光效率、窄的半峰宽及高量子产率等光电特性。但是由于纳米晶的表面缺陷,导致CsPbI_3钙钛矿纳米晶稳定性较差,限制了其应用范围。改善表面缺陷,提高纳米晶的稳定性成为研究热点。所以在传统热注法制备CsPbI_3纳米晶的基础上,采用简单的母液稀释法,160℃下油浴合成晶格间距为0.62 nm对应CsPbI_3标准卡片(100)晶面的立方相纳米晶。通过表征纳米晶的荧光发射和吸收性能,并结合稳定时间的变化,结果发现其发射峰稳定在680~700 nm左右。稳定时间由原来的7 d提高到10 d,大大提高了CsPbI_3纳米晶的稳定性,而且降低了发射波长峰值处强度衰减速率,延迟了荧光猝灭进程。
        Cesium-based lead halide(CsPbI_3)perovskite nanocrystals have photoelectric properties such as high photoluminescence efficiency,narrow half-peak width and high quantum yield.However,due to the surface defects of the nanocrystals,the stability of CsPbI_3 perovskite nanocrystals is poor,which limits their application range.Improving the surface defects and improving the stability of nanocrystalline have become a research hotspot.Therefore,on the basis of the preparation of CsPbI_3 nanocrystals by traditional thermal injection method,a simple mother solution dilution method was adopted to synthesize cubic phase nanocrystals corresponding to the standard card(100)crystal surface of CsPbI_3 with a lattice spacing of 0.62 nm at 160℃oil bath.The fluorescence emission and absorption properties of nanocrystalline were characterized,and the stability time was changed.The results show that the emission peak is stable at the range of 680 nm to 700 nm.The stability time increases from 7 d to 10 d,which greatly improves the stability of CsPbI_3 nanocrystals,and the intensity attenuation rate at the peak of emission wavelength is reduced,delaying the fluorescence quenching process.
引文
[1]BI K, WANG D, WANG P, et al. Cesium lead halide perovskite quantum dot-based warm white light-emitting diodes with high color rendering index[J]. Journal of Nanoparticle Research 2017, 19(5):174.
    [2]CAI W Q, CHEN Z M, LI Z C, et al. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red light-emitting devices[J]. ACS Applied Materials and Interfaces 2018, 10(49):42564-42572.
    [3]LI X M, CAO F, YU D J, et al. All inorganic halide perovskites nanosystem:Synthesis, structural features, optical properties and optoelectronic applications[J]. Small, 2017,13(9):1603996.
    [4]WANG Y, ZHANG T Y, KAN M, et al. Bifunctional stabilization of all-inorganicα-CsPbI3perovskite for 17%efficiency photovoltaics[J]. Journal of the American Chemical Society, 2018, 140(39):12345-12348.
    [5]NIEMANN R G, GOUDA L, HU J G, et al. Cs+incorporation into CH3NH3PbI3perovskite:Substitution limit and stability enhancement[J]. Journal of Materials Chemistry A, 2016, 4(45):17819-17827.
    [6]MURUGADOSS G, THANGAMUTHU R, KUMAR S M S, et al. Synthesis of ligand-free, large scale with high quality all-inorganic CsPbI3and CsPb2Br5nanocrystals and fabrication of all-inorganic perovskite solar cells[J]. Journal of Alloys and Compounds, 2019, 787:17-26.
    [7]WALEED A, TAVAKOLI M M, GU L L, et al. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire arraybased photodetectors[J]. Nano Letters, 2017, 17(8):4951-4957.
    [8]LI X M, WU Y, ZHANG S L, et al. CsPbX3quantum dots for lighting and displays:Roomerature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials,2016, 26(15):2435-2445.
    [9]DAVIS N J L K, DE LA PE?A F J, TABACHNYK M,et al. Photon reabsorption in mixed CsPbCl3:CsPbI3perovskite nanocrystal films for light-emitting diodes[J].Journal of Physical Chemistry C, 2017, 121(7):3790-3796.
    [10]CHEN Y, SONG J, HE G S, et al. Polymer-assisted roomtemperature synthesis of highly luminescent perovskite nanocrystals with superior water resistance for WLED[J].Materials Letters, 2018, 232:138-141.
    [11]XU H W, WANG J, XUAN T T, et al. Convenient and large-scale synthesis of high-quality, all-inorganic lead halide perovskite nanocrystals for white light-emitting diodes[J]. Chemical Engineering Journal, 2019, 364:20-27.
    [12]CAI W Q, CHEN Z M, LI Z C, et al. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red light-emitting devices[J]. ACS Applied Materials and Interfaces, 2018, 10(49):42564-42572.
    [13]HUANG H, SUSHA A S, KERSHAW S V, et al. Control of emission color of high quantum yield CH3NH3PbBr3perovskite quantum dots by precipitation temperature[J].Advanced Science, 2015, 2(9):1500194.
    [14]LUO P F, ZHOU Y G, ZHOU S W, et al. Fast anionexchange from CsPbI3to CsPbBr3via Br2-vapor-assisted deposition for air-stable all-inorganic perovskite solar cells[J]. Chemical Engineering Journal, 2018, 343:146-154.
    [15]HUANG J, WU Y H, ZHU Z G, et al. Control of oleylamine to perovskite ratio in synthesis of MAPbBr3nanoparticles[J]. Chemical Physics Letters, 2018, 702:21-25.
    [16]LU C H, HU J A, SHIH W Y, et al. Control of morphology, photoluminescence, and stability of colloidal methylammonium lead bromide nanocrystals by oleylamine capping molecules[J]. Journal of Colloid and Interface Science, 2016, 484:17-23.
    [17]LI X M, CAO F, YU D J, et al. All inorganic halide perovskites nanosystem:Synthesis, structural features, optical properties and optoelectronic applications[J]. Small, 2017,13(9):1603996.
    [18]TROTS D M, MYAGKOTA S V. High-temperature structural evolution of caesium and rubidium triiodoplumbates[J]. Journal of Physics and Chemistry of Solids, 2008,69(10):2520-2526.
    [19]LI F, XIA Z G, PAN C F, et al. High Br-content CsPb(ClyBr1-y)3perovskite nanocrystals with strong Mn2+emission through diverse cation/anion exchange engineering[J]. ACS Applied Materials and Interfaces, 2018,10(14):11739-11746.
    [20]ZHU J R, YANG X L, ZHU Y H, et al. Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio[J]. Journal of Physical Chemistry Letters, 2017, 8(17):4167-4171.
    [21]LIU F, DING C, ZHANG Y H, et al. Colloidal synthesis of air-stable alloyed CsSn1-xPbxI3perovskite nanocrystals for use in solar cells[J]. Journal of the American Chemical Society, 2017, 139(46):16708-16719.
    [22]XIANG S S, LI W P, WEI Y, et al. The synergistic effect of non-stoichiometry and Sb-doping on air-stableα-CsPbI3for efficient carbon-based perovskite solar cells[J].Nanoscale, 2018, 10(21):9996-10004.
    [23]JIANG Y A, ZHANG H L, QIU X F, et al. The air and thermal stabilities of lead-free perovskite variant Cs2SnI6powder[J]. Materials Letters, 2017, 199:50-52.
    [24]PROTESESCU L, YAKUNIN S, KUMAR S, et al. Dismantling the”red wall” of colloidal perovskites:Highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals[J]. ACS Nano, 2017, 11(3):3119-3134.
    [25]MUBIAYI K P, MOLOTO N, MOLOTO M J. Effect of diphenylphosphinic acid on cesium lead iodide perovskite stability[J]. CrystEngComm, 2018, 20(35):5275-5280.
    [26]LU C, LI H, KOLODZIEJSKI K, et al. Enhanced stabilization of inorganic cesium lead triiodide(CsPbI3)perovskite quantum dots with tri-octylphosphine[J]. Nano Research,2018, 11(2):762-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700