原位(TiB_2-TiB)/Cu复合材料组织与性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Microstructure and Properties of In Situ(TiB_2-TiB)/Cu Composites
  • 作者:任建强 ; 梁淑华 ; 姜伊辉 ; 杜翔
  • 英文作者:REN Jianqiang;LIANG Shuhua;JIANG Yihui;DU Xiang;School of Materials Science and Engineering, Xi'an University of Technology;
  • 关键词:铜基复合材料 ; 原位反应 ; TiB2颗粒 ; TiB晶须
  • 英文关键词:copper matrix composite;;in situ reaction;;TiB2 particle;;TiB whisker
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:西安理工大学材料科学与工程学院;
  • 出版日期:2019-01-11
  • 出版单位:金属学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金项目Nos.U1502274;51631002和51501149;; 陕西省重点研发计划项目No.2017ZDXM-GY-028~~
  • 语种:中文;
  • 页:JSXB201901011
  • 页数:7
  • CN:01
  • ISSN:21-1139/TG
  • 分类号:130-136
摘要
采用机械合金化和热压烧结相结合的方法制备出原位TiB_2颗粒和TiB晶须混杂增强的铜基复合材料,利用XRD、OM、SEM、TEM研究了复合材料的微观组织,分析了热压烧结过程中的原位反应机理及微观组织对复合材料硬度、导电率及致密度的影响规律。结果表明:原位反应过程为Cu和Ti原始粉末在800℃开始反应生成Cu3Ti中间相,在850℃时达到Cu3Ti中间相的熔点并在基体中形成液相微区,然后B原子扩散至该液相微区,在继续加热过程中原位析出硼化钛增强相。TiB晶须含量相对较多的复合材料具有较高的硬度,Ti B2颗粒含量相对较多的复合材料具有较高的导电率,TiB晶须和TiB_2颗粒混杂增强的铜基复合材料则同时兼备了以上2种复合材料的性能优势,其综合性能得到优化。所得烧结态3%(TiB_2-TiB)/Cu混杂增强复合材料的硬度和导电率分别达到86.6 HB和70.4%IACS。
        Copper matrix composites have attracted a lot of interest regarding their application as electrical materials. However, the development of copper matrix composites has suffered setbacks because of a trade-off between electrical conductivity and strength. In this work, TiB_2 particles and TiB whiskers hybrid reinforced copper matrix composites were in situ fabricated by mechanical alloying and hot pressing. The microstructures of hot-pressed composites were characterized by XRD, OM, SEM and TEM. The mechanism of in situ reaction during hot pressing process and the influence of microstructures on physical properties of hot-pressed composites were analyzed. The Cu and Ti raw powders were firstly reacted at 800 ℃ by forming Cu3 Ti transient phase. Then, the Cu-Ti liquid micro-zone was formed at850 ℃, which is higher than the melting point of Cu3 Ti phase. With the increasing of temperature further,TiB_2 particles and Ti B whiskers were formed in the liquid micro-zone by the diffusion of B atoms from copper matrix. When the reinforcing phase is consisted of mainly TiB whiskers, the hardness of composites is relatively high. But the composites reinforced mainly by TiB_2 particles have a higher electrical conductivity. The combined properties of hybrid reinforced copper matrix composites were optimized due to the combination action of TiB_2 particles and Ti B whisker. For the case of 3%(TiB_2-TiB)/Cu composites, thehardness and the electrical conductivity are 86.6 HB and 70.4% IACS, respectively.
引文
[1] Koch C C. Nanostructured Materials:Processing, Properties and Applications[M]. 2nd Ed., Norwich:William Andrews Publishing,2007:397
    [2] Shen Y T, Cui C X, Meng F B, et al. Fabrication of Cu-A12O3composites with high strength and electric conductivity[J]. Acta Metall.Sin., 1999, 35:889(申玉田,崔春翔,孟凡斌等.高强度高导电率Cu-Al2O3复合材料的制备[J].金属学报, 1999, 35:889)
    [3] Wang N Y, Tu J P, Yang Y Z, et al. Preparation and microstructure of nanoscale TiB2/Cu in-situ composites[J]. Chin. J. Nonferrous Met., 2002, 12:151(王耐艳,涂江平,杨友志等.原位反应纳米Ti B2/Cu复合材料的制备和微结构[J].中国有色金属金属学报, 2002, 12:151)
    [4] Lu K. The future of metals[J]. Science, 2010, 328:319
    [5] Yan C K, Zhou Y C. Mechanical properties of 2SnC particulate reinforced Cu matrix composites[J]. Acta Metall. Sin., 2003, 39:99(闫程科,周延春. Ti2SnC颗粒增强铜基复合材料的力学性能[J].金属学报, 2003, 39:99)
    [6] Zhou Y, Zhu X K, Su Y, et al. Reactive self-generated Cu-TiB2-TiC composites[J]. Chin. J. Nonferrous Met., 1998, 8(Suppl.2):15(周芸,朱心坤,苏云等.反应自生Cu-TiB2-TiC复合材料[J].中国有色金属金属学报, 1998, 8(增刊):15)
    [7] Guo M X, Wang M P, Shen K, et al. Synthesis of nano TiB2particles in copper matrix by in situ reaction of double-beam melts[J].J. Alloys Compd., 2008, 460:585
    [8] Sembosh S, Al-Kassab T, Gemma R, et al. Microstructural evolution of Cu-1 at%Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity[J]. Ultramicroscopy, 2009,109:593
    [9] Bagheri G A. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J]. J. Alloys Compd., 2016, 676:120
    [10] Madtha S, Lee C, Chandran K S R. Physical and mechanical properties of nanostructured titanium boride(TiB)ceramic[J]. J. Am.Ceram. Soc., 2008, 91:1319
    [11] Zou C L, Kang H J, Wang W, et al. Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2composites[J]. J. Alloys Compd., 2016, 687:312
    [12] Guo M X, Wang M P, Wang M P. Relationship between microstructure, properties and reaction conditions for Cu-TiB2alloys prepared by in situ reaction[J]. Acta Mater., 2009, 57:4568
    [13] Wang F C, Zhang Z H, Luo J, et al. A novel rapid route for in situ synthesizing TiB-TiB2composites[J]. Compos. Sci. Technol.,2009, 69:2682
    [14] Wen G, Li S B, Zhang B S, et al. Reaction synthesis of TiB2-TiC composites with enhanced toughness[J]. Acta Mater., 2001, 49:1463
    [15] Sobhani M, Arabi H, Mirhabibi A, et al. Microstructural evolution of copper-titanium alloy during in-situ formation of TiB2particles[J]. Trans. Nonferrous Met. Soc. China, 2013, 23:2994
    [16] Jiang Y H, Wang C, Liang S H, et al. TiB2(-TiB)/Cu in-situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper[J]. Mater. Charact., 2016,121:76
    [17] Jiang Y H, Li D, Liang S H, et al. Phase selection of titanium boride in copper matrix composites during solidification[J]. J. Mater. Sci., 2017, 52:2957
    [18] Gorsse S, Miracle D B. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Mater., 2003, 51:2427
    [19] Liu B X, Huang L J, Geng L, et al. Gradient grain distribution and enhanced properties of novel laminated Ti-TiBw/Ti composites by reaction hot-pressing[J]. Mater. Sci. Eng., 2014, A595:257
    [20] Selvakumar M, Chandrasekar P, Mohanraj M, et al. Role of powder metallurgical processing and TiB reinforcement on mechanical response of Ti-TiB composites[J]. Mater. Lett., 2015, 144:58
    [21] Feng H B, Zhou Y, Jia D C, et al. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites[J]. Cryst. Growth Des., 2006, 6:1626
    [22] Meng Q C, Feng H B, Chen G C, et al. Defects formation of the in situ reaction synthesized TiB whiskers[J]. J. Cryst. Growth, 2009,311:1612
    [23] Rahoma H K S, Chen Y, Wang X P, et al. Influence of(TiC+TiB)on the microstructure and tensile properties of Ti-B20 matrix alloy[J]. J. Alloys Compd., 2015, 627:415
    [24] Li S F, Kondoh K, Lmai H, et al. Strengthening behavior of in situsynthesized(TiC-TiB)/Ti composites by powder metallurgy and hot extrusion[J]. Mater. Des., 2016, 95:127
    [25] Tang R Z, Tian R Z. Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase[M]. Changsha:Central South University Press, 2009:1(唐仁政,田荣璋.二元合金相图及中间相晶体结构[M].长沙:中南大学出版社, 2009:1)
    [26] Verhoeven J D, Downing H L, Chumbley L S, et al. The resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. J. Appl.Phys., 1989, 65:1293
    [27] Qu L, Wang E G, Han K, et al. Studies of electrical resistivity of an annealed Cu-Fe composite[J]. J. Appl. Phys., 2013, 113:173708

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700