β-Mo_2C纳米管用于葡萄糖催化氧化及燃料电池的构建
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Catalytic oxidation of glucose by β-Mo_2C nanotubes and the construction of fuel cells
  • 作者:雷杰 ; 刘书绘 ; 晋晓勇 ; 彭娟 ; 倪刚 ; 张文涛
  • 英文作者:LEI Jie;LIU Shuhui;JIN Xiaoyong;PENG Juan;NI Gang;ZHANG Wentao;State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Ningxia University;School of the Environment, Nanjing University;
  • 关键词:β-Mo_2C ; 纳米管 ; 催化氧化 ; 葡萄糖 ; 燃料电池
  • 英文关键词:β-Mo_2C;;nanotubes;;catalytic oxidation;;glucose;;fuel cell
  • 中文刊名:HJHX
  • 英文刊名:Environmental Chemistry
  • 机构:宁夏大学省部共建煤炭高效利用与绿色化工国家重点实验室化学国家级实验教学示范中心;南京大学环境学院;
  • 出版日期:2019-04-03 14:33
  • 出版单位:环境化学
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金(21765017);; 宁夏“化学工程与技术”国内一流学科建设项目(NXYLXK2017A04);; 西部一流大学重大创新项目(ZKZD2017003)资助~~
  • 语种:中文;
  • 页:HJHX201904025
  • 页数:8
  • CN:04
  • ISSN:11-1844/X
  • 分类号:227-234
摘要
采用水热法合成棒状MoO_3纳米材料作为合成β-Mo_2C纳米管的前驱体,然后通过辅助超声搅拌溶剂热法合成Mo-多巴胺复合物,最后通过程序升温处理得到β-Mo_2C纳米管材料.通过X射线衍射(XRD)、透射电子显微镜(TEM)等技术对材料进行表征,并利用循环伏安法(CV)、方波脉冲伏安法(SWV)、线性扫描伏安法(LSV)等电化学方法研究了该材料对葡萄糖的催化氧化性能.实验结果表明,β-Mo_2C纳米管修饰电极阻抗小,传导电子的速率快,对葡萄糖的氧化具有很好的催化效果.利用β-Mo_2C纳米管构建的葡萄糖/O_2燃料电池的开路电位(OCP)为0.47 V,该燃料电池的最大电流密度3.0 mA·cm~(-2)、功率密度0.70 mW·cm~(-2).
        MoO_3 nanomaterials were synthesized by hydrothermal method as the precursor of β-Mo_2C nanotubes. Then, the Mo-dopamine complex was synthesized by assisted ultrasonic stirring solvent. Finally, β-Mo_2C nanotubes were prepared by programmed temperature processing. The nanotubes were characterized by X-ray diffraction(XRD) and transmission electron microscopy(TEM). Electrochemical methods such as cyclic voltammetry(CV), square wave pulse voltammetry(SWV), and linear sweep voltammetry(LSV) were used to study the catalytic oxidation of glucose. The experimental results showed that the β-Mo_2C nanomaterial possess excellent performance. The impedance of the nanotubes was small, the rate of electrons conduction was fast, and the catalytic effect on the oxidation of glucose was excellent. The open current potential(OCP) of the constructed glucose/O_2 fuel cell was 0.47 V, the maximum current density of the fuel cell was 3.0 mA·cm~(-2), and the power density was 0.70 mW·cm~(-2).
引文
[1] 陈如亮.新能源电池技术的研究[J].科技视界,2015,5(27):271-288.CHEN R L.Study on new energy battery technology[J].Science and Technology Vision,2015,5(27):271-288(in Chinese).
    [2] NETO S A,FORTI J C,ANDRADE A R D.An overview of enzymatic biofuel cells[J].Electrocatalysis,2010,1(1):87-94.
    [3] 刘强,许鑫华,任光雷,等.酶生物燃料电池[J].化学进展,2006,18(11):1530-1537.LIU Q,XU X H,REN G L,et al.Enzyme biofuel cell[J].Progress in Chemistry,2006,18 (11):1530-1537(in Chinese).
    [4] CARRETTE L,FRIEDRICH K A,STIMMING U.Fuel cells-fundamentals and applications[J].Fuelcells,2001,1(1):35-39.
    [5] 钟登杰,刘雅琦,廖新荣,等.金属及其化合物修饰微生物燃料电池阳极的研究进展[J].环境化学,2017,36(7):1636-1647.ZHONG D J,LIU Y Q,LIAO X R,et al.Research progress in anodes modified by metals and metals and metal compounds for microbialfuel cells[J].Environmental Chemistry,2017,36(7):1636-1647(in Chinese).
    [6] 吕娜.氧化铜基复合纳米材料的制备及其无酶葡萄糖传感性质研究[D].长春:东北师范大学,2016.LU N.Preparation of copper oxide-based composite nanomaterials and its enzyme-free glucose sensing properties[D].Changchun:Northeast Normal University,2016(in Chinese).
    [7] PARK S,CHUNG T D,KIM H C.Nonenzymatic glucose detection using mesoporous platinum[J].Analytical Chemistry,2003,75(13):3046-3049.
    [8] BROUZGOU A,TSIAKARAS P.Electrocatalysts for glucose electrooxidation reaction:a review[J].Topics in Catalysis,2015,58(18-20):1311-1327.
    [9] 王蕊.Pt-Pb纳米花修饰无酶葡萄糖传感器的研究[D].天津:天津大学,2010.WANG R.Study on Pt-Pb nanometer flower modified enzyme-free glucose sensor[D].Tianjin:Tianjin University,2010(in Chinese).
    [10] XIA Y,HUANG W,ZHENG J,et al.Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method[J].Biosensors & Bioelectronics,2011,26(8):3555-3561.
    [11] PARK S,PARK S,JEONGR A,et al.Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt[J].Biosensors & Bioelectronics,2012,31(1):284-291.
    [12] 王艺兰,包晓玉,杨妍,等.电沉积纳米NiOx无酶葡萄糖传感器的性能[J].分析试验室,2014,33(7):799-802.WANG Y L,BAO X Y,YANG Y,et al.Performance of a nonenzymatic glucose sensor based on structure of electrodeposited nickel oxide nanostructure[J].Chinese Journal of Analysis Laboratory,2014,33(7):799-802(in Chinese).
    [13] VRUBEL H,HU X.Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions[J].Angewandte Chemie,2012,124(51):12875-12878.
    [14] XIAO P,GE X,WANG H,et al.Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J].Advanced Functional Materials,2015,25(10):1520-1526.
    [15] KUDOT,KAWAMURA G,OKAMOTO H.A New (W,Mo) C electrocatalyst synthesized by a carbonyl process:Its activity in relation to H2,HCHO,and CH3OH Electro-Oxidation[J].Journal of the Electrochemical Society,1983,130(7):1491-1497.
    [16] MA F X,WU H B,XIA B Y,et al.Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production[J].Angewandte Chemie International Edition,2015,54(51):15395-15399.
    [17] CUI W,CHENG N,LIU Q,et al.Mo2C nanoparticles decorated graphitic carbon sheets:Biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation[J].ACS Catalysis,2014,4(8):2658-2661.
    [18] LIU Y,WANG M,ZHAO F,et al.The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix[J].Biosensors and Bioelectronics,2005,21(6):984-988.
    [19] GAO Z,LIN Y,HE Y,et al.Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly (vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide[J].Microchimica Acta,2017,184(3):807-814.
    [20] KATZ E,LIOUBASHEVSKI O,Willner I.Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems:Enhanced performance of biofuel cells[J].Journal of the American Chemical Society,2005,127(11):3979-3988.
    [21] 董绍俊.化学修饰电极[J].化学通报,1981,28(12):713-721.Dong S J.Chemically modified electrode [J].Chemistry,1981,28(12):713-721(in Chinese).
    [22] BASU D,BASU S.Performance studies of Pd-Pt and Pt-Pd-Au catalyst for electro-oxidation of glucose in direct glucose fuel cell[J].International Journal of Hydrogen Energy,2012,37(5):4678-4684.
    [23] ZHAO Y,FAN L,HONG B,et al.Three-dimensional porous palladium foam-like nanostructures as electrocatalysts for glucose biofuel cells[J].Energy Technology,2016,4(2):249-255.
    [24] YANG L,ZHANG Y,CHU M,et al.Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell[J].Biosensors and Bioelectronics,2014,52:105-110.
    [25] CUI S,WEN Z,MAO S,et al.One-pot synthesis of high-performance Co/graphene electrocatalysts for glucose fuel cells free of enzymes and precious metals[J].Chemical Communications,2015,51(45):9354-9357.
    [26] KLOKE A,KOHLER C,ZENGERLE R,et al.Porous Platinum electrodes fabricated by cyclic electrodeposition of Pt-Cu alloy:Application to implantable glucose fuel cells[J].Journal of Physical Chemistry C,2015,116(37):19689-19698.
    [27] WEN D,XU,DONG S.A single-walled carbon nanohorns-based miniature glucose/air biofuel cell harvesting energy from soft drinks[J].Energy & Environmental Science,2011,4(4):1358-1363.
    [28] 许凯歌,张笛,雷杰,等.Au Nanowires-MWCNTs修饰电极对葡萄糖的催化氧化[J].高等学校化学学报,2017,38(10):1864-1871.XU K G,ZHANG D,LEI J,et al.Au nanowires-MWCNTs modified electrode for catalyzing the oxidization of glucose[J].Chemical Journal of Chinese Universities,2017,38(10):1864-1871(in Chinese).
    [29] 陆天虹.能源电化学[M].北京:化学工业出版社,2014.LU T H.Energy Electrochemistry[M].Beijing:Chemical Industry Press,2014(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700