新型非均相催化剂纳米金属杂化酶的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of Novel Heterogeneous Enzyme/Metal Nanoparticle Hybridase
  • 作者:孙立瑞 ; 辛嘉英 ; 刘丰源 ; 张宏迪 ; 李家柔 ; 夏春谷
  • 英文作者:SUN Li-rui;XIN Jia-ying;LIU Feng-yuan;ZHANG Hong-di;LI Jia-rou;XIA Chun-gu;Key Laboratory for Food Science and Engineering,Harbin Uninversity of Commerce;State Key Laboratory for Oxo Synthesis & Selective Oxidation,Lanzhou Institute of Chemical Physics,Chinese Academy of Science;
  • 关键词:非均相催化剂 ; 杂化酶 ; 纳米金属杂化酶 ; 纳米催化
  • 英文关键词:heterogeneous catalyst;;hybridase;;enzyme/metal nanoparticle biohybrids;;nanocatalysis
  • 中文刊名:FZCH
  • 英文刊名:Journal of Molecular Catalysis(China)
  • 机构:哈尔滨商业大学食品科学与工程重点实验室;中国科学院兰州物理化学研究所羰基合成与选择氧化国家重点实验室;
  • 出版日期:2019-07-09 17:28
  • 出版单位:分子催化
  • 年:2019
  • 期:v.33;No.185
  • 基金:国家自然科学基金(21573055);; 哈尔滨商业大学创新团队项目(YJSCX2018-481HSD)~~
  • 语种:中文;
  • 页:FZCH201903010
  • 页数:11
  • CN:03
  • ISSN:62-1039/O6
  • 分类号:81-91
摘要
随着生物技术、电子传感技术、纳米技术的发展,新型非均相催化剂—纳米金属杂化酶的研究和开发逐渐走进学者们的视野.纳米金属杂化酶不仅具有高催化活性、高稳定性,并且可以在一定程度上改善原酶的底物特异性、化学选择性、立体选择性及区域选择性等,同时可提高酶的可操作性,便于重复利用.我们就纳米金属杂化酶的设计与合成策略、金属纳米粒子的种类、表征方法、杂化酶的特征及应用等方面进行综述报道,希望可以为学者们提供新的思路和思考,促进多学科的融合发展.
        With the development of biotechnology,electronic sensing technology and nanotechnology,the research and development of a new heterogeneous catalyst,enzyme/metal nanoparticle biohybrids,have gradually attracted close attention. The enzyme/metal nanoparticles biohybrids not only have high catalytic activity and stability,but also can improve the substrate specificity,chemo-,regio-,and enantioselectivity,and easy to be reused and separated from the reaction system. In this paper,the design and synthesis strategies,the types of metal nanoparticles,the characterization methods,the characteristics and applications of hybrid enzymes have been reviewed. We hoped to provide new ideas for scholars and promote the development of multidisciplinary integration.
引文
[1]a.Polshettiwar V,Varma R S.Chem Inform abstract:A-queous microwave chemistry:A clean and green synthetic tool for rapid drug discovery[J].Chem Soc Rev,2008,37(8):1546-1557.b.Chen Lin-lin(陈林林),Wang Zhen-xing(王振兴),Dou Bo-xin(窦博鑫),et al.Electrochemical performance of modified electrode by methanobaction functionalized gold nanoparticle for SOD simulation(甲烷氧化菌素功能化纳米金修饰电极模拟SOD的电化学性能研究)[J].J Mol Catal(China)(分子催化),2018,32(6):574-580.c.Liu Feng-yuan(刘丰源),Xin Jia-ying(辛嘉英),Sun Li-rui(孙立瑞),et al.High density culture of methane oxidizing bacteria and its application in biodiesel refining(甲烷氧化菌的高密度培养及其在生物柴油炼制中的应用)[J].J Mol Catal(China)(分子催化),2018,32(4):370-381.
    [2]a.Silva R R D.Bacterial and fungal proteolytic enzymes:Production,catalysis and potential applications[J].Appl Biochem&Biotechnol,2017,183(1):1-19.b.Lin Hui-ying(林惠颖),Xin Jia-ying(辛嘉英),Li Chun-yu(李春雨),et al.Progress on isolation and purification of particulate methane monooxygenase(颗粒性甲烷单加氧酶分离纯化方法的研究进展)[J].J Mol Catal(China)(分子催化),2018,32(1):90-98.c.Dou Bo-xin(窦博鑫),Xin Jia-ying(辛嘉英),Wang Zhen-xing(王振兴),et al.Multilayer self-assembly modified electrode of methanobactin functionalized gold nanoparticle to catalytic reduction of hydrogen peroxide(甲烷氧化菌素功能化金纳米层层自组装修饰电极上过氧化氢的催化还原)[J].J Mol Catal(China)(分子催化),2017,31(6):534-543.d.Zheng Li-na(郑丽娜),Xin Jia-ying(辛嘉英),Wang Yan(王艳),et al.Research progress on the influence of microwave on enzyme-catalyzed reactions and the microwave effect(微波对酶催化反应的影响及其微波效应的研究进展)[J].J Mol Catal(China)(分子催化),2017,31(6):567-574.
    [3]a.Ji Y B,Wang S W,Yu M,et al.Research status and development of application fields in enzyme technology[J].IOP Confer Series:Mater Sci Engineer,2018,292:012120.b.Li Chun-yu(李春雨),Xin Jia-ying(辛嘉英),Lin Hui-ying(林惠颖),et al.Study on functionalized gold nanoparticles of methanobactin by copper ion coordination uesd as simulated peroxidase(铜离子配位甲烷氧化菌素功能化纳米金模拟过氧化物酶的研究)[J].J Mol Catal(China)(分子催化),2017,31(5):480-485.
    [4]Polshettiwar V,Luque R,Fihri A,et al.Magnetically recoverable nanocatalysts[J].Chem Rev,2011,111(5):3036-3075.
    [5]Sebastian W,Alexander S T,Grass R N,et al.A recyclable nanoparticle-supported palladium catalyst for the hydroxycarbonylation of aryl halides in water[J].Angew Chem Inter Edit,2010,49(10):1697-1697.
    [6]Dou Bo-xin(窦博鑫),Xin Jia-ying(辛嘉英),Fan Hong-chen(范洪臣),et al.Functionalself-assembly gold nanoparticle modified electrodes and application in the field of biosensors with enzyme immobilization(功能化金纳米修饰电极自组装及其在固定化酶生物传感器中应用)[J].J Mol Catal(China)(分子催化),2016,30(4):391-400.
    [7]Li Shu-shuang(李舒爽),Tao Lei(陶磊),Zhang Qi(张奇),et al.Recent advancesin nano-gold-catalyzed green synthesis and clean reactions(纳米金催化的绿色合成与清洁反应研究新进展)[J].Acta Phys Chim Sin(物理化学学报),2016,32(1):61-74.
    [8]Filice M,Marciello M,Morales M P,et al.Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C-C bond formation and tandem catalysis[J].Cheminform,2013,49(61):6876-6878.
    [9]San B H,Kim S,Moh S H,et al.Platinum nanoparticles encapsulated by aminopeptidase:a multifunctional bioinorganic nanohybrid catalyst[J].Angew Chem Inter Edit,2011,50(50):11924-11929.
    [10]Lopez-Tejedor D,Blanca D L R,Palomo J M.Ultrasmall Pd(0)nanoparticles into a designed semisynthetic lipase:An efficient and recyclable heterogeneous biohybrid catalyst for the heck reaction under mild conditions[J].Molecules,2018,23(9):2358-2373.
    [11]Ueno T,Watanabe Y.Coordination chemistry in protein cages:principles,design,and applications[M].John Wiley&Sons,2013.
    [12]Krmer R.Coordination chemistry in protein cages.principles,design and applications.Herausgegeben von takafumi ueno und yoshihito watanabe[J].Angew Chem,2014,126(6):1503-1504.
    [13]Ueno T,Abe S,Yokoi N,et al.Coordination design of artificial metalloproteins utilizing protein vacant space[J].Coord Chem Rev,2007,251(21):2717-2731.
    [14]Li Quan-hui(李泉荟),Xin Jia-ying(辛嘉英),Wang Yan(王艳),et al.Lipase-catalyzed synthesis of starch ferulate in non-aqueous system(非水相脂肪酶催化阿魏酸淀粉酯的合成)[J].Fine Chem(精细化工),2016,33(11):1266-1271.
    [15]Chen Y Z,Yang C T,Chi B C,et al.Immobilization of lipases on hydrophobilized zirconia nanoparticles:Highly enantioselective and reusable biocatalysts[J].Langm Acs J Surf&Coll,2008,24(16):8877-8884.
    [16]Andrade L H,Rebelo L P,Netto C G C M,et al.Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized by different methodologies on superparamagnetic nanoparticles[J].J Mol Catal Enzy,2010,66(1):55-62.
    [17]Engstr9m K,Johnston E V,Verho O,et al.Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis:An artificial metalloenzyme[J].Angew Chem,2013,52(52):14006-14010.
    [18]Das S K,Motiar M,Khan R,et al.Bio-inspired fabrication of silver nanoparticles on nanostructured silica:Characterization and application as a highly efficient hydrogenation catalyst[J].Green Chem,2013,15(9):2548-2557.
    [19]Das S K,Parandhaman T,Pentela N,et al.Understanding the biosynthesis and catalytic activity of Pd,Pt,and Ag nanoparticles in hydrogenation and Suzuki coupling reactions at the nano-bio interface[J].J Phys Chem C,2014,118(42):24623-24632.
    [20]G9rbe T,Gustafson K P J,Verho O,et al.Design of a Pd(0)-Cal B CLEA biohybrid catalyst and its application in a one-pot cascade reaction[J].ACS Catal,2017,7(3):1601-1605.
    [21]Benavente R,Lopeztejedor D,Palomo J M.Synthesis of a superparamagnetic ultrathin Fe CO3nanorods-enzyme bionanohybrid as a novel heterogeneous catalyst[J].Chem Commun,2018,54(49):6256-6259.
    [22]Marco F,Marzia M,Morales M D P,et al.Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C-C bond formation and tandem catalysis[J].Cheminform,2013,49(61):6876-6878.
    [23]Fischer N O,Mcintosh C M,Simard J M,et al.Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors[J].Proce Nat Acad Sci Unit Sta Ameri,2002,99(8):5018-5023.
    [24]Fischer N O,Verma A,Goodman C M,et al.Reversible"irreversible"inhibition of chymotrypsin using nanoparticle receptors[J].J Am Chem Soc,2003,125(44):13387-13391.
    [25]Bretschneider J C,Maximilian R,Gero V P,et al.Photothermal control of the activity of HRP-functionalized gold nanoparticles[J].Small,2010,5(22):2549-2553.
    [26]Zayats M,Baron R,Popov I,et al.Biocatalytic growth of au nanoparticles:From mechanistic aspects to biosensors design[J].Nano Lett,2005,5(1):21-25.
    [27]Blankschien M D,Pretzer L A,Huschka R,et al.Lighttriggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes[J].ACS Nano,2013,7(1):654-663.
    [28]Cuenca T,Filice M,Palomo J M.Palladium nanoparticles enzyme aggregate(PANEA)as efficient catalyst for Suzuki-Miyaura reaction in aqueous media[J].Enzy Micro Technol,2016,95(1):242-247.
    [29]Garcia C,Junior I I,De Souza R O,et al.Novel nanoparticle/enzyme biosilicified nanohybrids for advanced heterogeneously catalyzed protocols[J].Catal Sci&Technol,2015,5(3):1840-1846.
    [30]Akabori S,Sakurai S,Izumi Y,et al.An asymmetric catalyst[J].Nature,1956,178(4528):323-324.
    [31]Wilson M E,Whitesides G M.Chem Inform abstract:Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(i)moiety[J].Chem Infor,1978,9(17):306-307.
    [32]Lin Y,Chen Z,Xiang Y L.Using inorganic nanomaterials to endow biocatalytic systems with unique features[J].Trends Biotechnol,2016,34(4):303-315.
    [33]Willner I,Basnar B,Willner B.Nanoparticle-enzyme hybrid systems for nanobiotechnology[J].FEBS J,2007,274(2):302-309.
    [34]Zayats M,Willner B,Willner I.Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes[J].Electroanalysis,2010,20(6):583-601.
    [35]Kobsa S,Saltzman W M.Bioengineering approaches to controlled protein delivery[J].Pedia Res,2008,63(5):513-519.
    [36]Chang F P,Hung Y,Chang J H,et al.Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis[J].Acs Appl Mater Interf,2014,6(9):6883-6890.
    [37]Dr G M,Dr A H.Biologically active molecules with a“Light Switch”[J].Angew Chem Int Edit,2006,45(30):4900-4921.
    [38]Kohse S,Neubauer A,Pazidis A,et al.Photoswitching of enzyme activity by laser-induced p H-jump[J].J Am Chem Soc,2013,135(25):9407-9411.
    [39]Yi X,Fernando P,Eugenii K,et al."Plugging into enzymes":Nanowiring of redox enzymes by a gold nanoparticle[J].Science,2003,299(5614):1877-1881.
    [40]Partha G,Xiaochao Y,Rochelle A,et al.Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles[J].J Am Chem Soc,2010,132(8):2642-2645.
    [41]Miriam C,Serena M,Veronica C,et al.Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells[J].Angew Chem Int Edt,2012,51(37):9272-9275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700