Catalytic activity of Cu-SSZ-13 prepared with different methods for NH_3-SCR reaction
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Catalytic activity of Cu-SSZ-13 prepared with different methods for NH_3-SCR reaction
  • 作者:Meng-Jie ; Han ; Yun-Lei ; Jiao ; Chun-Hong ; Zhou ; Yang-Long ; Guo ; Yun ; Guo ; Guan-Zhong ; Lu ; Li ; Wang ; Wang-Cheng ; Zhan
  • 英文作者:Meng-Jie Han;Yun-Lei Jiao;Chun-Hong Zhou;Yang-Long Guo;Yun Guo;Guan-Zhong Lu;Li Wang;Wang-Cheng Zhan;Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, East China University of Science and Technology;
  • 英文关键词:SSZ-13 zeolite;;Selective catalytic reduction;;Nitrogen oxides;;Preparation method;;Cu~(2+)
  • 中文刊名:XYJS
  • 英文刊名:稀有金属(英文版)
  • 机构:Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, East China University of Science and Technology;
  • 出版日期:2019-03-15
  • 出版单位:Rare Metals
  • 年:2019
  • 期:v.38
  • 基金:financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300);; the National Natural Science Foundation of China (Nos. 21577034 and 21333003);; the Science and Technology Commission of Shanghai Municipality (No. 16ZR1407900)
  • 语种:英文;
  • 页:XYJS201903004
  • 页数:11
  • CN:03
  • ISSN:11-2112/TF
  • 分类号:24-34
摘要
A series of Cu-SSZ-13 catalysts with the same Cu loading were prepared by different methods of incipient wetness impregnation [Cu-SSZ-13(IWI)], ion exchange[Cu-SSZ-13(IE)] and hydro-thermal synthesis [Cu-SSZ-13(HTS)]. Their activity for selective catalytic reduction of nitrogen oxides(NO_x) with NH3 was determined. The results show that the Cu-SSZ-13(HTS) catalyst exhibits a better ammonia selective catalytic reduction(NH3-SCR)activity compared with the other two catalysts, over which more than 90% NO conversion is obtained at 215-600℃under the space velocity of 180,000 h~(-1). The characterization results reveal that the Cu-SSZ-13(HTS) catalyst possesses more amount of stable Cu~(2+) in the six-membered ring and high ability for NH3 and NO adsorption, leading to its high NH3-SCR activity, although this catalyst has low surface area. On the other hand, the activity of Cu-SSZ-13(IE) catalyst is almost the same as that of Cu-SSZ-13(IWI) catalyst at the temperature lower than 400 ℃, but the activity of the former is much higher than that of the latter at > 400 ℃ due to the high activity of Cu-SSZ-13(IWI) catalyst for NH3 oxidation.
        A series of Cu-SSZ-13 catalysts with the same Cu loading were prepared by different methods of incipient wetness impregnation [Cu-SSZ-13(IWI)], ion exchange[Cu-SSZ-13(IE)] and hydro-thermal synthesis [Cu-SSZ-13(HTS)]. Their activity for selective catalytic reduction of nitrogen oxides(NO_x) with NH3 was determined. The results show that the Cu-SSZ-13(HTS) catalyst exhibits a better ammonia selective catalytic reduction(NH3-SCR)activity compared with the other two catalysts, over which more than 90% NO conversion is obtained at 215-600℃under the space velocity of 180,000 h~(-1). The characterization results reveal that the Cu-SSZ-13(HTS) catalyst possesses more amount of stable Cu~(2+) in the six-membered ring and high ability for NH3 and NO adsorption, leading to its high NH3-SCR activity, although this catalyst has low surface area. On the other hand, the activity of Cu-SSZ-13(IE) catalyst is almost the same as that of Cu-SSZ-13(IWI) catalyst at the temperature lower than 400 ℃, but the activity of the former is much higher than that of the latter at > 400 ℃ due to the high activity of Cu-SSZ-13(IWI) catalyst for NH3 oxidation.
引文
[1] Huang JW, Sun YH, Zhang YD, Zou GF, Yan CY, Cong S, Lei TY, Dai X, Guo J, Lu RF, Li YR, Xiong J. A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv Mater. 2018;30(5):1705045.
    [2] Huang JW, Li YR, Xia YF, Zhu JT, Yi QH, Wang H, Xiong J,Sun YH, Zou G F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res.2017;10(3):1010.
    [3] Burch R, Breen JP, Hill CJ, Krutzsch B, Konrad B, Jobson E,Cider L, Eranen K, Klingstedt F, Lindfors LE. Exceptional activity for NO_x reduction at low temperatures using combinations of hydrogen and higher hydrocarbons on Ag/Al_2O_3 catalysts. Top Catal. 2004;30-31(1):19.
    [4] Han J, Meeprasert J, Maitarad P, Nammuangruk S, Shi LY,Zhang DS. Investigation of the facet-dependent catalytic performance of Fe_2O_3/Ce02 for the selective catalytic reduction of NO with NH3. J Phys Chem C. 2016;120(3):1523.
    [5] Gu L, Chen X, Zhou Y, Zhu QL, Huang HF, Lu HF. Propene and CO oxidation on Pt/Ce-Zr-S042-diesel oxidation catalysts:effect of sulfate on activity and stability. Chin J Catal. 2017;38(3):607.
    [6] Gao RH, Zhang DS, Maitarad P, Shi LY, Rungrotmongkol T, Li HR, Zhang JP, Cao WG. Morphology-dependent properties of MnO_x/ZrO_2-CeO_2 nanostructures for the selective catalytic reduction of NO with NH3. J Phys Chem C. 2013;117(20):10502.
    [7] Wan HQ, Li D, Dai Y, Hu YH, Liu B, Dong L. Catalytic behaviors of CuO supported on Mn_2O_3 modifiedγ-Al_2O_3 for NO reduction by CO. J Mol Catal A Chem. 2010;332(1-2):32.
    [8] Luo JY, Gao F, Kamasamudram K, Currier N, Peden CHF,Yezerets A. New insights into Cu/SSZ-13 SCR catalyst acidity.Part I:nature of acidic sites probed by NH3 titration. J Catal.2017;348:291.
    [9] Liu FD, Shan WP, Pan DW, Li TY, He H. Selective catalytic reduction of NO_x by NH3 for heavy-duty diesel vehicle. Chin J Catal. 2014;35(9):1438.
    [10] Meng DM, Zhan WC, Guo Y, Guo YL, Wang L, Lu GZ. A highly effective catalyst of Sm-MnO_x for the NH3-SCR of NO_x at low temperature:promotional role of Sm and its catalytic performance. ACS Catal. 2015;5:5973.
    [11] Meng DM, Zhan WC, Guo Y, Guo YL, Wang YS, Wang L, Lu GZ. A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NO_x with ammonia:effect of the calcination temperature. J Mol Catal A Chem. 2016;420:272.
    [12] Grossale A, Nova I, Tronconi E. Study of a Fe-zeolite-based system as NH3-SCR catalyst for diesel exhaust after treatment.Catal Today. 2008;136(1-2):18.
    [13] Yates M, Martin JA, Martin-Luengo MA, Suarez S, Blanco J.N_2O formation in the ammonia oxidation and in the SCR process with V_2O_5-WO_3 catalysts. Catal Today. 2005;107-108(15):120.
    [14] Krishnan AT, Boehman AL. Selective catalytic reduction of nitric oxide with ammonia at low temperatures. Appl Catal B.1998;18(3-4):189.
    [15] Meng DM, Xu Q, Jiao YL, Guo Y, Guo YL, Wang L, Lu GZ,Zhan WC. Spinel structured CoaMnbOx mixed oxide catalyst forthe selective catalytic reduction of NO_x with NH3. Appl Catal B.2018;221:652.
    [16] Long RQ, Yang RT. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Am Chem Soc.1999;121(23):5595.
    [17] Chen HY, Sachtler WMH. Activity and durability of Fe/ZSM-5catalysts for lean burn NO_x reduction in the presence of water vapor. Catal Today. 1998;42(1-2):73.
    [18] Lai SS, She Y, Zhan WC, Guo Y, Guo YL, Wang L, Lu GZ.Performance of Fe-ZSM-5 for selective catalytic reduction of NO_x with NH3:effect of the atmosphere during the preparation of catalysts. J Mol Catal A Chem. 2016;424:232.
    [19] Xia Y, Zhan WC, Guo Y, Guo YL, Lu GZ. Activity of Fe-beta zeolite catalyst in selective catalytic reduction of nitrogen oxides:influence of Fe content. Chin J Catal. 2016;37(12):2069.
    [20] Weng XL, Dai XX, Zeng QS, Liu Y, Wu ZB. DRIFT studies on promotion mechanism of H_3PW_(12)O_(40)in selective catalytic reduction of NO with NH3. J Colloid Interface Sci. 2016;461:9.
    [21] Seo CK, Choi B, Kim H, Lee CH, Lee CB. Effect of Zr02addition on de-NO_x performance of Cu-ZSM-5 for SCR catalyst.Chem Eng J. 2012;191(19):331.
    [22] Qi GS, Yang RT. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl Catal B.2005;60(1-2):13.
    [23] Lai SS, Meng DM, Zhan WC, Guo Y, Guo YL, Zhang ZG, Lu GZ. The promotional role of Ce in Cu/ZSM-5 and in situ surface reaction for selective catalytic reduction of NO_x with NH_3. RSC Adv. 2015;5(110):90235.
    [24] Chen HY, Sachtler WMH. Promoted Fe/ZSM-5 catalysts prepared by sublimation:de-NO_x activity and durability in H_2O-rich streams. Catal Lett. 1998;50(3-4):125.
    [25] Carja G, Delahay G, Signorile C, Coq B. Fe-Ce-ZSM-5 a new catalyst of outstanding properties in the selective catalytic reduction of NO with NH3. Chem Commun. 2004;10(12):1404.
    [26] Smith LJ, Davidson A, Cheetham AK. A neutron diffraction and infrared spectroscopy study of the acid form of the aluminosilicate zeolite, chabazite(H-SSZ-13). Catal Lett. 1997;49(3-4):143.
    [27] Fickel DW, D'Addio E, Lauterbach JA, Lobo RF. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl Catal B. 2011;102(3-4):441.
    [28] Jeon HY, Shin CH, Jung HJ, Hong SB. Catalytic evaluation of small-pore molecular sieves with different framework topologies for the synthesis of methylamines. Appl Catal A. 2006;305(1):70.
    [29] Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF.Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J Catal. 2012;287(3):203.
    [30] Ren LM, Zhu LF, Yang CG, Chen YM, Sun Q, Zhang HY, Li CJ, Nawaz FS, Meng XJ, Xiao FS. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO_x by NH3. Chem Commun. 2011;47(35):9789.
    [31] Xie LJ, Liu FD, Ren LM, Shi XY, Xiao FS, He H. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NO_x with NH3. Environ Sci Technol. 2014;48(1):566.
    [32] Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM. Isolated Cu~(2+)ions:active sites for selective catalytic reduction of NO. Chem Commun. 2011;47(2):800.
    [33] Bates SA, Verma AA, Paolucci C, Parekh AA, Anggara T,Yezerets A, Schneider WF, Miller JT, Delgass WN, Ribeiro FH.Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. J Catal. 2014;312(15):87.
    [34] Fickel DW, Lobo RF. Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD. J Phys Chem C. 2010;114(3):1633.
    [35] Deka U, Lezcano-Gonzalez I, Warrender SJ, Picone AL, Wright PA, Weckhuysen BM, Beale AM. Changing active sites in Cu-CHA catalysts:deNOx selectivity as a function of the preparation method. Microporous Mesoporous Mater. 2013;166(166):144.
    [36] Kim YJ, Kwon HJ, Heo I, Nam I, Cho BK, Choung JW, Cha M,Yeo GK. Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove NO_x from diesel engine exhaust. Appl Catal B. 2012;126:9.
    [37] Treacy MMJ, Higgins JB. Collection of Simulated XRD Powder Patterns for Zeolites. 5th ed. Amsterdam:USA Elsevier; 2007.112.
    [38] Ma L, Cheng YS, Cavataio GV, McCabe RW, Fu LX, Li JH.Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34catalysts with hydrothermal treatment for NH3-SCR of NO_x in diesel exhaust. Chem Eng J. 2013;225(3):323.
    [39] Ismagilov ZR, Yashnik SA, Anufrienko VF, Larina TV, Vasenin NT, Bulgakov NN, Vosel SV, Tsykoza LT. Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts. Appl Surf Sci. 2004;226(1-3):88.
    [40] Dedecek J, Wichterlova B. Role of hydrated Cu ion complexes and aluminum distribution in the framework on the Cu ion siting in ZSM-5. J Phys Chem B. 1997;101(49):10233.
    [41] Giordanino F, Vennestrom PNR, Lundegaard LF, Stappen FN,Mossin S, Beato P, Bordiga S, Lamberti C. Characterization of Cu-exchanged SSZ-13:a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-βwith similar Si/Al and Cu/Al ratios. Dalton Trans. 2013;42(35):12741.
    [42] Lezcano-Gonzalez I, Deka U, Bij HEVD, Paalanenb P, Arstad B, Weckhuysen BM, Beale AM. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction(NH3-SCR)systems. Appl Catal B. 2014;154-155(1):339.
    [43] El-Trass A, El-Shamy H, El-Mehasseb I, El-Kemary M. CuO nanoparticles:synthesis, characterization, optical properties and interaction with amino acids. Appl Surf Sci. 2012;258(7):2997.
    [44] Zhang RR, Li YH, Zhen TL. Ammonia selective catalytic reduction of NO over Fe/Cu-SSZ-13. RSC Adv. 2014;4(94):52130.
    [45] Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CS. In situ XPS investigations of Cu_(1-x)Ni_xZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Appl Catal B. 2005;55(4):287.
    [46] Figueiredo RT, Martinez-Arias A, Granados ML, Fierro JLG.Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation. J Catal. 1998;178(1):146.
    [47] Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A,Lameii M. XPS study of the Cu@Cu_2O core-shell nanoparticles. Appl Surf Sci. 2008;255(5):2730.
    [48] Kim MH, Nam IS, Kim YG. Characteristics of mordenite-type zeolite catalysts deactivated by SO_2 for the reduction of NO with hydrocarbons. J Catal. 1998;179(2):350.
    [49] Wagner CD. II. Standard ESCA Spectra of the Elements and Line Energy Information. In:Muilenberg GE, editor. Handbook of X-ray Photoelectron Spectroscopy, 1st edn. Waltham:Perkin-Elmer, Physical Electronics; 1979. 74.
    [50] Chadwick D, Hashemi T. Adsorbed corrosion inhibitors studied by electron spectroscopy:benzotriazole on copper and copper alloys. Corros Sci. 1978;18(1):39.
    [51] Zhang T, Li JM, Liu J, Wang DX, Zhao Z, Cheng K, Li JH.High activity and wide temperature window of Fe-Cu-SSZ-13in the selective catalytic reduction of NO with ammonia. AIChE J. 2015;61(11):3825.
    [52] Richter M, Fait M, Eckelt R, Schneider M, Radnik J, Heidemann D, Fricke R. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. J Catal. 2007;245(1):11.
    [53] Kefirov R, Penkova A, Hadjiivanov K, Dzwigaj S, Che M.Stabilization of Cu~+ions in BEA zeolite:study by FTIR spectroscopy of adsorbed CO and TPR. Microporous Mesoporous Mater. 2008;116(1-3):180.
    [54] Kwak JH, Zhu HH, Lee JH, Peden CHF, Szanyi J. Two different cationic positions in Cu-SSZ-13. Chem Commun. 2012;48(39):4758.
    [55] Cao Y, Zou S, Lan L, Yang ZZ, Xu HD, Lin T, Gong MC, Chen YG. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NO_x with ammonia. J Mol Catal A Chem. 2015;398:304.
    [56] Kim DJ, Wang J, Crocker M. Adsorption and desorption of propene on a commercial Cu-SSZ-13 SCR catalyst. Catal Today. 2014;231(4):83.
    [57] Deka U, Lezcano-Gonzalez I, Weckhuysen BM, Beale AM.Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NO_x. ACS Catal.2013;3(3):413.
    [58] Sultana A, Sasaki M, Suzuki K, Hamada H. Tuning the NO_x conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR. Catal Commun. 2013;41(21):21.
    [59] Ye Q, Wang LF, Yang RT. Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5. Appl Catal A. 2012;427-428(1):24.
    [60] Rodriguez-Gonzalez R, Hermes F, Bertmer M, Rodriguez Castellon E, Jimenez-Lopez A, Simon U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27 Al-MAS-NMR spectroscopy. Appl Catal A. 2007;328(2):174.
    [61] Wang D, Jangjou Y, Liu Y, Sharma MK, Luo JY, Li JH,Kamasamudram K, Epling WS. A comparison of hydrothermal aging effects on NH3-SCR of NO_x over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl Catal B. 2015;165:438.
    [62] Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W. The influence of silicon on the catalytic properties of Cu/SAPO-34for NO_x reduction by ammonia-SCR. Appl Catal B. 2012;127(43):137.
    [63] Olsson L, Wijayanti K, Leistner K, Kumar A, Joshi SY,Kamasamudram K, Currier NW, Yezeretsb A. A multi-site kinetic model for NH3-SCR over Cu/SSZ-13. Appl Catal B Environ. 2015;174-175:212.
    [64] Despres J, Koebel M, Krocher O, Elsener M, Wokaun A.Adsorption and desorption of NO and NO_2 on Cu-ZSM-5.Microporous Mesoporous Mater. 2003;58(2):175.
    [65] Lisi L, Pirone R, Russo G, Santamaria N, Stanzione V. Nitrates and nitrous oxide formation during the interaction of nitrogen oxides with Cu-ZSM-5 at low temperature. Appl Catal A. 2012;413-414(1):117.
    [66] Landi G, Lisi L, Pirone R, Russo G, Tortorelli M. Effect of water on NO adsorption over Cu-ZSM-5 based catalysts. Catal Today. 2012;191(1):138.
    [67] Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH,Szanyi J, Peden CHF. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J Catal. 2013;300(3):20.
    [68] Chen BH, Xu RN, Zhang RD, Liu N. An economical way to synthesize SSZ-13 with abundant ion-exchanged Cu~+for an extraordinary performance in selective catalytic reduction(SCR)of NO_x by ammonia. Environ Sci Technol. 2014;48(23):13909.
    [69] Brandenberger S, Kr(o|¨)chera O, Wokaun A, Tissler A, Althoff R.The role of Br(?)nsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5. J Catal. 2009;268(2):297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700