Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces
  • 作者:XIN ; XIE ; MINGBO ; PU ; XIONG ; LI ; KAIPENG ; LIU ; JINJIN ; JIN ; XIAOLIANG ; MA ; XIANGANG ; LUO
  • 英文作者:XIN XIE;MINGBO PU;XIONG LI;KAIPENG LIU;JINJIN JIN;XIAOLIANG MA;XIANGANG LUO;State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics,Chinese Academy of Sciences;School of Optoelectronics, University of Chinese Academy of Sciences;School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics,Chinese Academy of Sciences;School of Optoelectronics, University of Chinese Academy of Sciences;School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China;
  • 出版日期:2019-05-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Natural Science Foundation of China(NSFC)(61575201,61622508,61822511)
  • 语种:英文;
  • 页:GZXJ201905016
  • 页数:8
  • CN:05
  • ISSN:31-2126/O4
  • 分类号:110-117
摘要
Achieving electromagnetic wave scattering manipulation in the multispectral and broad operation band has been a long pursuit in stealth applications. Here, we present an approach by using single-layer metasurfaces composed of space-variant amorphous silicon ridges tiled on a metallic mirror, to generate high-efficiency dual-band and ultra-wideband photonic spin-orbit interaction and geometric phase. Two scattering engineered metasurfaces have been designed to reduce specular reflection; the first one can suppress both specular reflectances at 1.05–1.08 μm and 5–12 μm below 10%. The second one is designed for an ultra-broadband of 4.6–14 μm, which is actually implemented by cleverly connecting two bands of 4.6–6.1 μm and 6.1–14 μm. Furthermore, the presented structures exhibit low thermal emission at the same time due to the low absorption loss of silicon in the infrared spectrum, which can be regarded as an achievement of laser–infrared compatible camouflage.We believe the proposed strategy may open a new route to implement multispectral electromagnetic modulation and multiphysical engineering applications.
        Achieving electromagnetic wave scattering manipulation in the multispectral and broad operation band has been a long pursuit in stealth applications. Here, we present an approach by using single-layer metasurfaces composed of space-variant amorphous silicon ridges tiled on a metallic mirror, to generate high-efficiency dual-band and ultra-wideband photonic spin-orbit interaction and geometric phase. Two scattering engineered metasurfaces have been designed to reduce specular reflection; the first one can suppress both specular reflectances at 1.05–1.08 μm and 5–12 μm below 10%. The second one is designed for an ultra-broadband of 4.6–14 μm, which is actually implemented by cleverly connecting two bands of 4.6–6.1 μm and 6.1–14 μm. Furthermore, the presented structures exhibit low thermal emission at the same time due to the low absorption loss of silicon in the infrared spectrum, which can be regarded as an achievement of laser–infrared compatible camouflage.We believe the proposed strategy may open a new route to implement multispectral electromagnetic modulation and multiphysical engineering applications.
引文
1.N.Yu and F.Capasso,“Flat optics with designer metasurfaces,”Nat.Mater.13,139-150(2014).
    2.N.Meinzer,W.L.Barnes,and I.R.Hooper,“Plasmonic meta-atoms and metasurfaces,”Nat.Photonics 8,889-898(2014).
    3.X.Luo,D.Tsai,M.Gu,and M.Hong,“Extraordinary optical fields in nanostructures:from sub-diffraction-limited optics to sensing and energy conversion,”Chem.Soc.Rev.(2019),DOI:10.1039/c8cs00864g.
    4.X.Luo,“Engineering optics 2.0:a revolution in optical materials,devices,and systems,”ACS Photon.5,4724-4738(2018).
    5.X.Luo,D.Tsai,M.Gu,and M.Hong,“Subwavelength interference of light on structured surfaces,”Adv.Opt.Photon.10,757-842(2018).
    6.X.Luo,“Subwavelength artificial structures:opening a new era for engineering optics,”Adv.Mater.31,1804680(2018).
    7.M.Pu,X.Li,X.Ma,Y.Wang,Z.Zhao,C.Wang,C.Hu,P.Gao,C.Huang,and H.Ren,“Catenary optics for achromatic generation of perfect optical angular momentum,”Sci.Adv.1,e1500396(2015).
    8.J.Zeng,L.Li,X.Yang,and J.Gao,“Generating and separating twisted light by gradient-rotation split-ring antenna metasurfaces,”Nano Lett.16,3101-3108(2016).
    9.N.K.Grady,J.E.Heyes,D.R.Chowdhury,Y.Zeng,M.T.Reiten,A.K.Azad,A.J.Taylor,D.A.Dalvit,and H.-T.Chen,“Terahertz metamaterials for linear polarization conversion and anomalous refraction,”Science 340,1304-1307(2013).
    10.M.Pu,P.Chen,Y.Wang,Z.Zhao,C.Huang,C.Wang,X.Ma,and X.Luo,“Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,”Appl.Phys.Lett.102,131906(2013).
    11.X.Ma,M.Pu,X.Li,Y.Guo,and X.Luo,“All-metallic wide-angle metasurfaces for multifunctional polarization manipulation,”Opto-Electron.Adv.2,180023(2019).
    12.M.Khorasaninejad,W.T.Chen,R.C.Devlin,J.Oh,A.Y.Zhu,and F.Capasso,“Metalenses at visible wavelengths:diffraction-limited focusing and subwavelength resolution imaging,”Science 352,1190-1194(2016).
    13.S.Wang,P.C.Wu,V.-C.Su,Y.-C.Lai,C.H.Chu,J.-W.Chen,S.-H.Lu,J.Chen,B.Xu,and C.-H.Kuan,“Broadband achromatic optical metasurface devices,”Nat.Commun.8,187(2017).
    14.D.Lin,P.Fan,E.Hasman,and M.L.Brongersma,“Dielectric gradient metasurface optical elements,”Science 345,298-302(2014).
    15.Y.Wang,X.Ma,X.Li,M.Pu,and X.Luo,“Perfect electromagnetic and sound absorption via subwavelength holes array,”Opto-Electron.Adv.1,180013(2018).
    16.X.Ni,A.V.Kildishev,and V.M.Shalaev,“Metasurface holograms for visible light,”Nat.Commun.4,2807(2013).
    17.G.Zheng,H.Mühlenbernd,M.Kenney,G.Li,T.Zentgraf,and S.Zhang,“Metasurface holograms reaching 80%efficiency,”Nat.Nanotechnol.10,308-312(2015).
    18.X.Li,L.Chen,Y.Li,X.Zhang,M.Pu,Z.Zhao,X.Ma,Y.Wang,M.Hong,and X.Luo,“Multicolor 3D meta-holography by broadband plasmonic modulation,”Sci.Adv.2,e1601102(2016).
    19.D.S.Dong,J.Yang,Q.Cheng,J.Zhao,L.H.Gao,S.J.Ma,S.Liu,H.B.Chen,Q.He,and W.W.Liu,“Terahertz broadband lowreflection metasurface by controlling phase distributions,”Adv.Opt.Mater.3,1405-1410(2015).
    20.T.J.Cui,M.Q.Qi,X.Wan,J.Zhao,and Q.Cheng,“Coding metamaterials,digital metamaterials and programmable metamaterials,”Light:Sci.Appl.3,e218(2014).
    21.M.Pu,Z.Zhao,Y.Wang,X.Li,X.Ma,C.Hu,C.Wang,C.Huang,and X.Luo,“Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,”Sci.Rep.5,9822(2015).
    22.X.Ni,Z.J.Wong,M.Mrejen,Y.Wang,and X.Zhang,“An ultrathin invisibility skin cloak for visible light,”Science 349,1310-1314(2015).
    23.Y.Yang,L.Jing,B.Zheng,R.Hao,W.Yin,E.Li,C.M.Soukoulis,and H.Chen,“Full-polarization 3D metasurface cloak with preserved amplitude and phase,”Adv.Mater.28,6866-6871(2016).
    24.X.Xie,M.Pu,Y.Huang,X.Ma,X.Li,Y.Guo,and X.Luo,“Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field,”Adv.Mater.Technol.4,1800612(2018).
    25.J.Yang,C.Huang,X.Wu,B.Sun,and X.Luo,“Dual-wavelength carpet cloak using ultrathin metasurface,”Adv.Opt.Mater.6,1800073(2018).
    26.X.Xie,X.Li,M.Pu,X.Ma,K.Liu,Y.Guo,and X.Luo,“Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,”Adv.Funct.Mater.28,1706673(2018).
    27.N.Yu,P.Genevet,M.A.Kats,F.Aieta,J.-P.Tetienne,F.Capasso,and Z.Gaburro,“Light propagation with phase discontinuities:generalized laws of reflection and refraction,”Science 334,333-337(2011).
    28.X.Luo,“Principles of electromagnetic waves in metasurfaces,”Sci.China Phys.Mechan.Astron.58,594201(2015).
    29.S.Pancharatnam,“Generalized theory of interference and its applications,”Proc.Indian Acad.Sci.A 44,247-262(1956).
    30.M.V.Berry,“The adiabatic phase and Pancharatnam’s phase for polarized light,”J.Mod.Opt.34,1401-1407(1987).
    31.S.Simms and V.Fusco,“Chessboard reflector for RCS reduction,”Electron.Lett.44,316-318(2008).
    32.E.D.Palik,Handbook of Optical Constants of Solids(Academic,1985).
    33.M.Pu,Y.Guo,X.Li,X.Ma,and X.Luo,“Revisitation of extraordinary Young’s interference:from catenary optical fields to spinorbit interaction in metasurfaces,”ACS Photon.5,3198-3204(2018).
    34.M.Pu,X.Ma,Y.Guo,X.Li,and X.Luo,“Theory of microscopic metasurface waves based on catenary optical fields and dispersion,”Opt.Express 26,19555-19562(2018).
    35.J.C.I.Galarregui,A.T.Pereda,J.L.M.De Falcon,I.Ederra,R.Gonzalo,and P.de Maagt,“Broadband radar cross-section reduction using AMC technology,”IEEE Trans.Antennas Propag.61,6136-6143(2013).
    36.A.Nemati,Q.Wang,M.Hong,and J.Teng,“Tunable and reconfigurable metasurfaces and metadevices,”Opto-Electron.Adv.1,180009(2018).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700