Spin-Dependent Electron Tunneling in ZnSe/Zn_(1-x)Mn_xSe Heterostructures with Double δ-Potentials
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spin-Dependent Electron Tunneling in ZnSe/Zn_(1-x)Mn_xSe Heterostructures with Double δ-Potentials
  • 作者:L.Bruno ; Chandrasekar ; M.Karunakaran ; K.Gnanasekar
  • 英文作者:L.Bruno Chandrasekar;M.Karunakaran;K.Gnanasekar;Department of Physics, The American College;Department of Physics, Alagappa Govt. Arts College;
  • 英文关键词:matrix method;;heterostructure;;δ-potential
  • 中文刊名:CITP
  • 英文刊名:理论物理(英文版)
  • 机构:Department of Physics, The American College;Department of Physics, Alagappa Govt. Arts College;
  • 出版日期:2019-03-01
  • 出版单位:Communications in Theoretical Physics
  • 年:2019
  • 期:v.71
  • 语种:英文;
  • 页:CITP201903012
  • 页数:5
  • CN:03
  • ISSN:11-2592/O3
  • 分类号:85-89
摘要
Using the matrix method, spin-dependent tunneling properties such as barrier transparency, the degree of resonance polarization, and tunneling lifetime of electrons are examined in the non-magnetic/diluted magnetic semiconductor heterostructure. The effects of the double δ-potential and the magnetic field are discussed on the transport properties of the electrons. The introduction of double δ-potential shifts the resonance peak of polarization to the higher energy value. Both height and position of the δ-potential influence the degree of resonance polarization in the considered heterostructure. The increasing magnetic field enhances the spin-polarization.
        Using the matrix method, spin-dependent tunneling properties such as barrier transparency, the degree of resonance polarization, and tunneling lifetime of electrons are examined in the non-magnetic/diluted magnetic semiconductor heterostructure. The effects of the double δ-potential and the magnetic field are discussed on the transport properties of the electrons. The introduction of double δ-potential shifts the resonance peak of polarization to the higher energy value. Both height and position of the δ-potential influence the degree of resonance polarization in the considered heterostructure. The increasing magnetic field enhances the spin-polarization.
引文
[1] D. Loss and D. P. Divincenzo, Phys. Rev. A 57(1998)120.
    [2] D. J. Monsma, R. Vlutters, and J. C. Lodder, Science281(1998)407.
    [3] Y. Guo, Ci-En Shang, and X. Chen, Phys. Rev. B 72(2005)045356.
    [4] J. C. Egues and J. W. Wilkins, Phys. Rev. B 58(1998)16012.
    [5] L. Bruno Chandrasekar, K. Gnanasekar, M. Karunakaran, et al., Eur. Phys. J. Plus 132(2017)11542.
    [6] L. Bruno Chandrasekar, Superlattices and Microstructures 112(2017)451.
    [7] M. von Ortenberg, Phys. Rev. Lett. 49(1982)1041.
    [8] Y. Guo, B. LGu, H. Wang, et al., Phys. Rev. B 63(2001)214415.
    [9] R. Fitzgerald, Phys. Today 53(2000)21.
    [10] G. Papp, S. Borza, and F. M. Peeters, J. Appl. Phys. 97(2005)113901.
    [11] K. Chang and F. M. Peeters, Solid State Commun. 120(2001)181.
    [12] K. Chang, J. B. Xia, and F. M. Peeters, Phys. Rev. B 65(2002)155211.
    [13] G. Papp, S. Borza, and F. M. Peeters, Phys. Stat. Sol(b)243(2006)1956.
    [14] A. Saffarzadeh, M. Bahar, and M. Banihasan, Physica E27(2005)462.
    [15] K. Gnanasekar and K. Navaneethakrishnan, Physica E 35(2006)103.
    [16] A. Saffarzadeh, Solid State Commun. 137(2006)463.
    [17] Y. Ming, J. Gong, and R. Q. Zhang, J. Appl. Phys. 110(2011)093717.
    [18] J. D. Lu, Y. B. Li, S. J. Peng, et al., Phys. Lett. A 380(2016)1668.
    [19] S. Y. Chen, S. P. Yang, Q. Tang, et al., J. Comput. Electron 16(2017)347.
    [20] L. Bruno Chandrasekar, K. Gnanasekar, and M. Karunakaran, Superlattices and Microstructures 118(2018)319.
    [21] J. D. Lu, B. Xu, and S. J. Peng, Mat. Sci. Semicon. Proc.27(2014)785.
    [22] L. Bruno Chandrasekar, K. Gnanasekar, M. Karunakaran, et al., Bull. Mater. Sci. 39(2016)1430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700